IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v427y2020ics0304380020301629.html
   My bibliography  Save this article

Allometry in an eco-evolutionary network model

Author

Listed:
  • Abernethy, Gavin M.

Abstract

An eco-evolutionary food web model is modified to incorporate a body-size trait, enabling a framework for non-uniform mortality and ecological efficiency between species. Evolved communities feature increased connectance, with according benefits to community robustness, and persistent top predators but reduced omnivory and food chain lengths. Body-size maintains a strong positive correlation to trophic level, but does not correlate to an individual species’ contribution to network stability. A spatially-explicit extension of the model assembles large metacommunities with distinct distributions of body-size amongst local food webs.

Suggested Citation

  • Abernethy, Gavin M., 2020. "Allometry in an eco-evolutionary network model," Ecological Modelling, Elsevier, vol. 427(C).
  • Handle: RePEc:eee:ecomod:v:427:y:2020:i:c:s0304380020301629
    DOI: 10.1016/j.ecolmodel.2020.109090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020301629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abernethy, Gavin M. & McCartney, Mark & Glass, David H., 2019. "The role of migration in a spatial extension of the Webworld eco-evolutionary model," Ecological Modelling, Elsevier, vol. 397(C), pages 122-140.
    2. Richard J. Williams & Neo D. Martinez, 2000. "Simple rules yield complex food webs," Nature, Nature, vol. 404(6774), pages 180-183, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    2. Fath, Brian D. & Halnes, Geir, 2007. "Cyclic energy pathways in ecological food webs," Ecological Modelling, Elsevier, vol. 208(1), pages 17-24.
    3. Jihui Han & Wei Li & Longfeng Zhao & Zhu Su & Yijiang Zou & Weibing Deng, 2017. "Community detection in dynamic networks via adaptive label propagation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    4. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    5. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Johnson, Jeffrey C. & Luczkovich, Joseph J. & Borgatti, Stephen P. & Snijders, Tom A.B., 2009. "Using social network analysis tools in ecology: Markov process transition models applied to the seasonal trophic network dynamics of the Chesapeake Bay," Ecological Modelling, Elsevier, vol. 220(22), pages 3133-3140.
    7. Giacomini, Henrique Corrêa & De Marco, Paulo & Petrere, Miguel, 2009. "Exploring community assembly through an individual-based model for trophic interactions," Ecological Modelling, Elsevier, vol. 220(1), pages 23-39.
    8. Li, Xiaojia & Li, Menghui & Hu, Yanqing & Di, Zengru & Fan, Ying, 2010. "Detecting community structure from coherent oscillation of excitable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 164-170.
    9. Yoshida, Katsuhiko, 2008. "Evolutionary cause of the vulnerability of insular communities," Ecological Modelling, Elsevier, vol. 210(4), pages 403-413.
    10. Fath, Brian D. & Killian, Megan C., 2007. "The relevance of ecological pyramids in community assemblages," Ecological Modelling, Elsevier, vol. 208(2), pages 286-294.
    11. Sakiyama, Tomoko, 2021. "A power law network in an evolutionary hawk–dove game," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Weiwei Zhang & Jinde Cao & Dingyuan Chen & Ahmed Alsaedi, 2019. "Out Lag Synchronization of Fractional Order Delayed Complex Networks with Coupling Delay via Pinning Control," Complexity, Hindawi, vol. 2019, pages 1-7, August.
    13. Chengyi Tu & Joel Carr & Samir Suweis, 2016. "A data driven network approach to rank countries production diversity and food specialization," Papers 1606.01270, arXiv.org.
    14. Carscallen, W. Mather A. & Romanuk, Tamara N., 2012. "Structure and robustness to species loss in Arctic and Antarctic ice-shelf meta-ecosystem webs," Ecological Modelling, Elsevier, vol. 245(C), pages 208-218.
    15. Fath, Brian D., 2007. "Structural food web regimes," Ecological Modelling, Elsevier, vol. 208(2), pages 391-394.
    16. De Roos, André M. & Schellekens, Tim & Van Kooten, Tobias & Van De Wolfshaar, Karen & Claessen, David & Persson, Lennart, 2008. "Simplifying a physiologically structured population model to a stage-structured biomass model," Theoretical Population Biology, Elsevier, vol. 73(1), pages 47-62.
    17. Richard J. Williams & Neo D. Martinez, 2001. "Stabilization of Chaotic and Non-Permanent Food Web Dynamics," Working Papers 01-07-037, Santa Fe Institute.
    18. Yang, Lixin & Jiang, Jun & Liu, Xiaojun, 2016. "Cluster synchronization in community network with hybrid coupling," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 82-91.
    19. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    20. Alexandridis, Nikolaos & Dambacher, Jeffrey M. & Jean, Fred & Desroy, Nicolas & Bacher, Cédric, 2017. "Qualitative modelling of functional relationships in marine benthic communities," Ecological Modelling, Elsevier, vol. 360(C), pages 300-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:427:y:2020:i:c:s0304380020301629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.