IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v284y2014icp1-9.html
   My bibliography  Save this article

Modelling habitat preference of an alien aquatic fern, Azolla filiculoides (Lam.), in Anzali wetland (Iran) using data-driven methods

Author

Listed:
  • Sadeghi, Roghayeh
  • Zarkami, Rahmat
  • Van Damme, Patrick

Abstract

A crucial element in modelling habitat requirements of any alien plant species is selection of the most important predictive variables. A database consisting of measurements collected at 7 different sampling sites at Selkeh Wildlife Refuge (Anzali wetland, Iran) was applied to predict the habitat preferences of an exotic species, Azolla filiculoides (Lam.). The measured variables were a combination of physico-chemical, structural-habitat and cover percentage data of A. filiculoides collected during the 2007–2008 period. We used support vector machines (SVMs) combined with two search algorithms, i.e. genetic algorithm (GA) and greedy stepwise (GS) in order to select the most important explanatory variables for the target species. The models with the best performing exponent were run five times after randomization to check the models’ robustness and reproducibility. The results of paired Student's t-test showed that the two optimizers (GA and GS) were unable to improve the predictive performances of the SVMs. Yet, GA outperformed GS resulting in a better prediction. All applied methods showed that both structural-habitat and physico-chemical variables might play key roles for meeting the habitat preferences of the exotic fern in the wetland. However, structural-habitat parameters (particularly wetland depth and air temperature) were the most predictive ones. Among the water quality variables, orthophosphate and sulphate were also recognized as important predictors. The physico-chemical variables selected by the models revealed that reduction of industrial pollution loads and also decreasing nutrient and organic pollution inputs into the wetland could be effective way to reduce the growth of Azolla's population.

Suggested Citation

  • Sadeghi, Roghayeh & Zarkami, Rahmat & Van Damme, Patrick, 2014. "Modelling habitat preference of an alien aquatic fern, Azolla filiculoides (Lam.), in Anzali wetland (Iran) using data-driven methods," Ecological Modelling, Elsevier, vol. 284(C), pages 1-9.
  • Handle: RePEc:eee:ecomod:v:284:y:2014:i:c:p:1-9
    DOI: 10.1016/j.ecolmodel.2014.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014001847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadeghi, Roghayeh & Zarkami, Rahmat & Sabetraftar, Karim & Van Damme, Patrick, 2012. "Application of classification trees to model the distribution pattern of a new exotic species Azolla filiculoides (Lam.) at Selkeh Wildlife Refuge, Anzali wetland, Iran," Ecological Modelling, Elsevier, vol. 243(C), pages 8-17.
    2. S. T. Buckland & D. L. Borchers & A. Johnston & P. A. Henrys & T. A. Marques, 2007. "Line Transect Methods for Plant Surveys," Biometrics, The International Biometric Society, vol. 63(4), pages 989-998, December.
    3. Sadeghi, Roghayeh & Zarkami, Rahmat & Sabetraftar, Karim & Van Damme, Patrick, 2012. "Use of support vector machines (SVMs) to predict distribution of an invasive water fern Azolla filiculoides (Lam.) in Anzali wetland, southern Caspian Sea, Iran," Ecological Modelling, Elsevier, vol. 244(C), pages 117-126.
    4. Zarkami, Rahmat & Sadeghi, Roghayeh & Goethals, Peter, 2012. "Use of fish distribution modelling for river management," Ecological Modelling, Elsevier, vol. 230(C), pages 44-49.
    5. Sadeghi, Roghayeh & Zarkami, Rahmat & Sabetraftar, Karim & Van Damme, Patrick, 2013. "Application of genetic algorithm and greedy stepwise to select input variables in classification tree models for the prediction of habitat requirements of Azolla filiculoides (Lam.) in Anzali wetland,," Ecological Modelling, Elsevier, vol. 251(C), pages 44-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    2. Roghayeh Sadeghi Pasvisheh & Marie Anne Eurie Forio & Long Tuan Ho & Peter L. M. Goethals, 2021. "Evidence-Based Management of the Anzali Wetland System (Northern Iran) Based on Innovative Monitoring and Modeling Methods," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    3. Walker, Adam N. & Poos, Jan-Jaap & Groeneveld, Rolf A., 2015. "Invasive species control in a one-dimensional metapopulation network," Ecological Modelling, Elsevier, vol. 316(C), pages 176-184.
    4. Gobeyn, Sacha & Mouton, Ans M. & Cord, Anna F. & Kaim, Andrea & Volk, Martin & Goethals, Peter L.M., 2019. "Evolutionary algorithms for species distribution modelling: A review in the context of machine learning," Ecological Modelling, Elsevier, vol. 392(C), pages 179-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Argaw Ambelu & Seblework Mekonen & Magaly Koch & Taffere Addis & Pieter Boets & Gert Everaert & Peter Goethals, 2014. "The Application of Predictive Modelling for Determining Bio-Environmental Factors Affecting the Distribution of Blackflies (Diptera: Simuliidae) in the Gilgel Gibe Watershed in Southwest Ethiopia," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-10, November.
    2. Sadeghi, Roghayeh & Zarkami, Rahmat & Sabetraftar, Karim & Van Damme, Patrick, 2013. "Application of genetic algorithm and greedy stepwise to select input variables in classification tree models for the prediction of habitat requirements of Azolla filiculoides (Lam.) in Anzali wetland,," Ecological Modelling, Elsevier, vol. 251(C), pages 44-53.
    3. Sadeghi, Roghayeh & Zarkami, Rahmat & Sabetraftar, Karim & Van Damme, Patrick, 2012. "Application of classification trees to model the distribution pattern of a new exotic species Azolla filiculoides (Lam.) at Selkeh Wildlife Refuge, Anzali wetland, Iran," Ecological Modelling, Elsevier, vol. 243(C), pages 8-17.
    4. Gobeyn, Sacha & Mouton, Ans M. & Cord, Anna F. & Kaim, Andrea & Volk, Martin & Goethals, Peter L.M., 2019. "Evolutionary algorithms for species distribution modelling: A review in the context of machine learning," Ecological Modelling, Elsevier, vol. 392(C), pages 179-195.
    5. Sadeghi, Roghayeh & Zarkami, Rahmat & Sabetraftar, Karim & Van Damme, Patrick, 2012. "Use of support vector machines (SVMs) to predict distribution of an invasive water fern Azolla filiculoides (Lam.) in Anzali wetland, southern Caspian Sea, Iran," Ecological Modelling, Elsevier, vol. 244(C), pages 117-126.
    6. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
    7. Roghayeh Sadeghi Pasvisheh & Marie Anne Eurie Forio & Long Tuan Ho & Peter L. M. Goethals, 2021. "Evidence-Based Management of the Anzali Wetland System (Northern Iran) Based on Innovative Monitoring and Modeling Methods," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    8. Kadukothanahally Nagaraju Shivaprakash & Niraj Swami & Sagar Mysorekar & Roshni Arora & Aditya Gangadharan & Karishma Vohra & Madegowda Jadeyegowda & Joseph M. Kiesecker, 2022. "Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    9. Devin S. Johnson & Jeffrey L. Laake & Jay M. Ver Hoef, 2010. "A Model-Based Approach for Making Ecological Inference from Distance Sampling Data," Biometrics, The International Biometric Society, vol. 66(1), pages 310-318, March.
    10. Coro, Gianpaolo & Vilas, Luis Gonzalez & Magliozzi, Chiara & Ellenbroek, Anton & Scarponi, Paolo & Pagano, Pasquale, 2018. "Forecasting the ongoing invasion of Lagocephalus sceleratus in the Mediterranean Sea," Ecological Modelling, Elsevier, vol. 371(C), pages 37-49.
    11. Kosmowski, Frederic & Chamberlin, Jordan & Ayalew, Hailemariam & Sida, Tesfaye & Abay, Kibrom & Craufurd, Peter, 2021. "How accurate are yield estimates from crop cuts? Evidence from smallholder maize farms in Ethiopia," Food Policy, Elsevier, vol. 102(C).
    12. Ornprapa Thepsilvisut & Nuengruethai Srikan & Preuk Chutimanukul & Rusama Marubodee & Hiroshi Ehara, 2024. "Developing Guidelines for Azolla microphylla Production as Compost for Sustainable Agriculture," Resources, MDPI, vol. 13(11), pages 1-16, November.
    13. T. A. Marques & S. T. Buckland & D. L. Borchers & D. Tosh & R. A. McDonald, 2010. "Point Transect Sampling Along Linear Features," Biometrics, The International Biometric Society, vol. 66(4), pages 1247-1255, December.
    14. Wainwright, Warwick & Drucker, Adam G. & Maxted, Nigel & Brehm, Joana Magos & Ng’uni, Dickson & Moran, Dominic, 2019. "Estimating in situ conservation costs of Zambian crop wild relatives under alternative conservation goals," Land Use Policy, Elsevier, vol. 81(C), pages 632-643.
    15. Morati Mpalo & Lenyeletse Vincent Basupi & Gizaw Mengistu Tsidu, 2024. "Impacts of Wildlife Artificial Water Provisioning in an African Savannah Ecosystem: A Spatiotemporal Analysis," Land, MDPI, vol. 13(5), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:284:y:2014:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.