Prediction ability and sensitivity of artificial intelligence-based habitat preference models for predicting spatial distribution of Japanese medaka (Oryzias latipes)
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecolmodel.2008.03.022
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kemp, Stanley J. & Zaradic, Patricia & Hansen, Frank, 2007. "An approach for determining relative input parameter importance and significance in artificial neural networks," Ecological Modelling, Elsevier, vol. 204(3), pages 326-334.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fukuda, Shinji, 2009. "Consideration of fuzziness: Is it necessary in modelling fish habitat preference of Japanese medaka (Oryzias latipes)?," Ecological Modelling, Elsevier, vol. 220(21), pages 2877-2884.
- Yi, Yujun & Cheng, Xi & Yang, Zhifeng & Wieprecht, Silke & Zhang, Shanghong & Wu, Yingjie, 2017. "Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 748-762.
- Fukuda, Shinji & De Baets, Bernard & Mouton, Ans M. & Waegeman, Willem & Nakajima, Jun & Mukai, Takahiko & Hiramatsu, Kazuaki & Onikura, Norio, 2011. "Effect of model formulation on the optimization of a genetic Takagi–Sugeno fuzzy system for fish habitat suitability evaluation," Ecological Modelling, Elsevier, vol. 222(8), pages 1401-1413.
- Mocq, J. & St-Hilaire, A. & Cunjak, R.A., 2013. "Assessment of Atlantic salmon (Salmo salar) habitat quality and its uncertainty using a multiple-expert fuzzy model applied to the Romaine River (Canada)," Ecological Modelling, Elsevier, vol. 265(C), pages 14-25.
- Gobeyn, Sacha & Mouton, Ans M. & Cord, Anna F. & Kaim, Andrea & Volk, Martin & Goethals, Peter L.M., 2019. "Evolutionary algorithms for species distribution modelling: A review in the context of machine learning," Ecological Modelling, Elsevier, vol. 392(C), pages 179-195.
- Febrina, Rina & Sekine, Masahiko & Noguchi, Hiroyuki & Yamamoto, Koichi & Kanno, Ariyo & Higuchi, Takaya & Imai, Tsuyoshi, 2015. "Modeling the preference of ayu (Plecoglossus altivelis) for underwater sounds to determine the migration path in a river," Ecological Modelling, Elsevier, vol. 299(C), pages 102-113.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marijana Zekić-Sušac & Marinela Knežević & Rudolf Scitovski, 2021. "Modeling the cost of energy in public sector buildings by linear regression and deep learning," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 307-322, March.
- Shengshi Wang & Lianyong Zuo & Miao Li & Qiao Wang & Xizhen Xue & Qicong Liu & Shuai Jiang & Jian Wang & Xitong Duan, 2021. "The Data-Driven Modeling of Pressure Loss in Multi-Batch Refined Oil Pipelines with Drag Reducer Using Long Short-Term Memory (LSTM) Network," Energies, MDPI, vol. 14(18), pages 1-25, September.
- Muñoz-Mas, R. & Martínez-Capel, F. & Alcaraz-Hernández, J.D. & Mouton, A.M., 2015. "Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?," Ecological Modelling, Elsevier, vol. 309, pages 72-81.
- Nasrin, Sharmin & Bunker, Jonathan, 2024. "Gender equality through sustainable transport policy," Transport Policy, Elsevier, vol. 149(C), pages 59-79.
- Fischer, Andreas, 2015. "How to determine the unique contributions of input-variables to the nonlinear regression function of a multilayer perceptron," Ecological Modelling, Elsevier, vol. 309, pages 60-63.
- Namazi, Mohammad & Shokrolahi, Ahmad & Sadeghzadeh Maharluie, Mohammad, 2016. "Detecting and ranking cash flow risk factors via artificial neural networks technique," Journal of Business Research, Elsevier, vol. 69(5), pages 1801-1806.
More about this item
Keywords
Fish habitat preference; Fuzzy reasoning; Artificial neural network; Genetic algorithm; Hybrid model; Habitat evaluation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:215:y:2008:i:4:p:301-313. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.