IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v384y2018icp128-144.html
   My bibliography  Save this article

Land use and cover change modelling and scenarios in the Upper Uruguay Basin (Brazil)

Author

Listed:
  • de Freitas, Marcos Wellausen Dias
  • Muñoz, Pablo
  • dos Santos, João Roberto
  • Alves, Diógenes Salas

Abstract

The objective of this work was to implement a spatial dynamics model to simulate land use and cover change (LUCC) in the period between 1986, 2002 and 2008 and to generate future scenarios until 2030 in an area characterized by multiple, competitive and complex LUCC processes. The model structure follows the majority of the existing LUCC models, being composed by six consecutive procedures: (a) calculation of transition demands, (b) definition and mapping of LUCC processes, (c) generation of transition probabilities maps, (d) spatial allocation of transitions, (e) calibration and validation of the simulation results, (f) generation of scenarios. The present model which is called LanDSCAM differs from other LUCC models reported in the literature in that: (a) LanDSCAM provision for the aggregation of multiple land use and cover transitions, simplifying LUCC modelling of study areas with multiple and complex land use and cover transitions; (b) a mandatory application of user-defined regions for transition demands calculation, transitions spatial allocation and model calibration, (c) introduction of specific procedures for spatial allocation of transitions divided on a deterministic cellular automata and a stochastic patch generation functions. The use of a theoretical approach for systems dynamics modelling allowed an overview on the different models of development by society. The LUCC model developed in this study provided contributions to the generation of simulations and scenarios in situations related to multiple, competitive and complex LUCC processes.

Suggested Citation

  • de Freitas, Marcos Wellausen Dias & Muñoz, Pablo & dos Santos, João Roberto & Alves, Diógenes Salas, 2018. "Land use and cover change modelling and scenarios in the Upper Uruguay Basin (Brazil)," Ecological Modelling, Elsevier, vol. 384(C), pages 128-144.
  • Handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:128-144
    DOI: 10.1016/j.ecolmodel.2018.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castella, Jean-Christophe & Verburg, Peter H., 2007. "Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam," Ecological Modelling, Elsevier, vol. 202(3), pages 410-420.
    2. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    3. Herrera, Amilcar O., 1981. "The generation of technologies in rural areas," World Development, Elsevier, vol. 9(1), pages 21-35, January.
    4. Helen Briassoulis, 2000. "Analysis of Land Use Change: Theoretical and Modeling Approaches," Wholbk, Regional Research Institute, West Virginia University, number 17, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiangfu Liao & Lina Tang & Guofan Shao, 2022. "Multi-Scenario Simulation to Predict Ecological Risk Posed by Urban Sprawl with Spontaneous Growth: A Case Study of Quanzhou," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    2. Druga, Michal & Minár, Jozef, 2023. "Cost distance and potential accessibility as alternative spatial approximators of human influence in LUCC modelling," Land Use Policy, Elsevier, vol. 132(C).
    3. Xia Xu & Mengxi Guan & Honglei Jiang & Lingfei Wang, 2019. "Dynamic Simulation of Land Use Change of the Upper and Middle Streams of the Luan River, Northern China," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    4. Sadooghi, Seyed Ehsan & Taleai, Mohammad & Abolhasani, Somaie, 2022. "Simulation of urban growth scenarios using integration of multi-criteria analysis and game theory," Land Use Policy, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holger Cammerer & Annegret Thieken & Peter Verburg, 2013. "Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1243-1270, September.
    2. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    3. Shoyama, Kikuko & Yamagata, Yoshiki, 2014. "Predicting land-use change for biodiversity conservation and climate-change mitigation and its effect on ecosystem services in a watershed in Japan," Ecosystem Services, Elsevier, vol. 8(C), pages 25-34.
    4. Hone-Jay Chu & Chen-Fa Wu & Yu-Pin Lin, 2013. "Incorporating Spatial Autocorrelation with Neural Networks in Empirical Land-Use Change Models," Environment and Planning B, , vol. 40(3), pages 384-404, June.
    5. Melvin Lippe & Thomas Hilger & Sureeporn Sudchalee & Naruthep Wechpibal & Attachai Jintrawet & Georg Cadisch, 2017. "Simulating Stakeholder-Based Land-Use Change Scenarios and Their Implication on Above-Ground Carbon and Environmental Management in Northern Thailand," Land, MDPI, vol. 6(4), pages 1-18, December.
    6. Lippe, Melvin & Rummel, Lisa & Günter, Sven, 2022. "Simulating land use and land cover change under contrasting levels of policy enforcement and its spatially-explicit impact on tropical forest landscapes in Ecuador," Land Use Policy, Elsevier, vol. 119(C).
    7. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    8. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    9. Fondevilla, Cristian & Àngels Colomer, M. & Fillat, Federico & Tappeiner, Ulrike, 2016. "Using a new PDP modelling approach for land-use and land-cover change predictions: A case study in the Stubai Valley (Central Alps)," Ecological Modelling, Elsevier, vol. 322(C), pages 101-114.
    10. Lucas Becerra & Sebastián Carenzo & Paula Juarez, 2020. "When Circular Economy Meets Inclusive Development. Insights from Urban Recycling and Rural Water Access in Argentina," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    11. Margaret Gitau & Nathaniel Bailey, 2012. "Multi-Layer Assessment of Land Use and Related Changes for Decision Support in a Coastal Zone Watershed," Land, MDPI, vol. 1(1), pages 1-27, December.
    12. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    13. Charlotte Shade & Peleg Kremer, 2019. "Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies," Land, MDPI, vol. 8(2), pages 1-19, February.
    14. Wu, Wei & Yeager, Kevin M. & Peterson, Mark S. & Fulford, Richard S., 2015. "Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)," Ecological Modelling, Elsevier, vol. 303(C), pages 55-69.
    15. Veronika Asamer & Michael Braito & Klara Breitwieser & Barbara Enengel & Rainer Silber & Hans Karl Wytrzens, 2009. "Abschätzung der Wahrscheinlichkeit einer Bewirtschaftungsaufgabe landwirtschaftlicher Parzellen mittels GIS-gestützter Modellierung (PROBAT)," Working Papers 422009, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    16. Jaekyung Lee & Galen Newman & Yunmi Park, 2018. "A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    17. Prashanti Sharma & Rajesh Bahadur Thapa & Mir Abdul Matin, 2020. "Examining forest cover change and deforestation drivers in Taunggyi District, Shan State, Myanmar," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5521-5538, August.
    18. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    19. Javier Muro & Leo Zurita-Arthos & José Jara & Esteban Calderón & Richard Resl & Andreas Rienow & Valerie Graw, 2020. "Earth Observation for Settlement Mapping of Amazonian Indigenous Populations to Support SDG7," Resources, MDPI, vol. 9(8), pages 1-17, August.
    20. van Vliet, Jasper & Hagen-Zanker, Alex & Hurkens, Jelle & van Delden, Hedwig, 2013. "A fuzzy set approach to assess the predictive accuracy of land use simulations," Ecological Modelling, Elsevier, vol. 261, pages 32-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:128-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.