IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v384y2018icp128-144.html
   My bibliography  Save this article

Land use and cover change modelling and scenarios in the Upper Uruguay Basin (Brazil)

Author

Listed:
  • de Freitas, Marcos Wellausen Dias
  • Muñoz, Pablo
  • dos Santos, João Roberto
  • Alves, Diógenes Salas

Abstract

The objective of this work was to implement a spatial dynamics model to simulate land use and cover change (LUCC) in the period between 1986, 2002 and 2008 and to generate future scenarios until 2030 in an area characterized by multiple, competitive and complex LUCC processes. The model structure follows the majority of the existing LUCC models, being composed by six consecutive procedures: (a) calculation of transition demands, (b) definition and mapping of LUCC processes, (c) generation of transition probabilities maps, (d) spatial allocation of transitions, (e) calibration and validation of the simulation results, (f) generation of scenarios. The present model which is called LanDSCAM differs from other LUCC models reported in the literature in that: (a) LanDSCAM provision for the aggregation of multiple land use and cover transitions, simplifying LUCC modelling of study areas with multiple and complex land use and cover transitions; (b) a mandatory application of user-defined regions for transition demands calculation, transitions spatial allocation and model calibration, (c) introduction of specific procedures for spatial allocation of transitions divided on a deterministic cellular automata and a stochastic patch generation functions. The use of a theoretical approach for systems dynamics modelling allowed an overview on the different models of development by society. The LUCC model developed in this study provided contributions to the generation of simulations and scenarios in situations related to multiple, competitive and complex LUCC processes.

Suggested Citation

  • de Freitas, Marcos Wellausen Dias & Muñoz, Pablo & dos Santos, João Roberto & Alves, Diógenes Salas, 2018. "Land use and cover change modelling and scenarios in the Upper Uruguay Basin (Brazil)," Ecological Modelling, Elsevier, vol. 384(C), pages 128-144.
  • Handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:128-144
    DOI: 10.1016/j.ecolmodel.2018.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castella, Jean-Christophe & Verburg, Peter H., 2007. "Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam," Ecological Modelling, Elsevier, vol. 202(3), pages 410-420.
    2. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    3. Herrera, Amilcar O., 1981. "The generation of technologies in rural areas," World Development, Elsevier, vol. 9(1), pages 21-35, January.
    4. Helen Briassoulis, 2000. "Analysis of Land Use Change: Theoretical and Modeling Approaches," Wholbk, Regional Research Institute, West Virginia University, number 17, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia Xu & Mengxi Guan & Honglei Jiang & Lingfei Wang, 2019. "Dynamic Simulation of Land Use Change of the Upper and Middle Streams of the Luan River, Northern China," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    2. Jiangfu Liao & Lina Tang & Guofan Shao, 2022. "Multi-Scenario Simulation to Predict Ecological Risk Posed by Urban Sprawl with Spontaneous Growth: A Case Study of Quanzhou," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    3. Druga, Michal & Minár, Jozef, 2023. "Cost distance and potential accessibility as alternative spatial approximators of human influence in LUCC modelling," Land Use Policy, Elsevier, vol. 132(C).
    4. Sadooghi, Seyed Ehsan & Taleai, Mohammad & Abolhasani, Somaie, 2022. "Simulation of urban growth scenarios using integration of multi-criteria analysis and game theory," Land Use Policy, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holger Cammerer & Annegret Thieken & Peter Verburg, 2013. "Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1243-1270, September.
    2. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    3. Shoyama, Kikuko & Yamagata, Yoshiki, 2014. "Predicting land-use change for biodiversity conservation and climate-change mitigation and its effect on ecosystem services in a watershed in Japan," Ecosystem Services, Elsevier, vol. 8(C), pages 25-34.
    4. Hone-Jay Chu & Chen-Fa Wu & Yu-Pin Lin, 2013. "Incorporating Spatial Autocorrelation with Neural Networks in Empirical Land-Use Change Models," Environment and Planning B, , vol. 40(3), pages 384-404, June.
    5. Melvin Lippe & Thomas Hilger & Sureeporn Sudchalee & Naruthep Wechpibal & Attachai Jintrawet & Georg Cadisch, 2017. "Simulating Stakeholder-Based Land-Use Change Scenarios and Their Implication on Above-Ground Carbon and Environmental Management in Northern Thailand," Land, MDPI, vol. 6(4), pages 1-18, December.
    6. Lippe, Melvin & Rummel, Lisa & Günter, Sven, 2022. "Simulating land use and land cover change under contrasting levels of policy enforcement and its spatially-explicit impact on tropical forest landscapes in Ecuador," Land Use Policy, Elsevier, vol. 119(C).
    7. Babigumira, Ronnie & Angelsen, Arild & Buis, Maarten & Bauch, Simone & Sunderland, Terry & Wunder, Sven, 2014. "Forest Clearing in Rural Livelihoods: Household-Level Global-Comparative Evidence," World Development, Elsevier, vol. 64(S1), pages 67-79.
    8. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    9. Qing Shen & Feng Zhang, 2007. "Land-Use Changes in a Pro-Smart-Growth State: Maryland, USA," Environment and Planning A, , vol. 39(6), pages 1457-1477, June.
    10. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    11. Yuanyuan Yang & Shuwen Zhang & Jiuchun Yang & Xiaoshi Xing & Dongyan Wang, 2015. "Using a Cellular Automata-Markov Model to Reconstruct Spatial Land-Use Patterns in Zhenlai County, Northeast China," Energies, MDPI, vol. 8(5), pages 1-21, May.
    12. Bonoua Faye & Guoming Du & Edmée Mbaye & Chang’an Liang & Tidiane Sané & Ruhao Xue, 2023. "Assessing the Spatial Agricultural Land Use Transition in Thiès Region, Senegal, and Its Potential Driving Factors," Land, MDPI, vol. 12(4), pages 1-20, March.
    13. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    14. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    15. Shivangi S. Somvanshi & Oshin Bhalla & Phool Kunwar & Madhulika Singh & Prafull Singh, 2020. "Monitoring spatial LULC changes and its growth prediction based on statistical models and earth observation datasets of Gautam Budh Nagar, Uttar Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1073-1091, February.
    16. Brian Pickard & Joshua Gray & Ross Meentemeyer, 2017. "Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models," Land, MDPI, vol. 6(3), pages 1-21, August.
    17. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    18. Tu, Hung-Ming & Chen, Hui-Mei, 2020. "From deforestation to afforestation: Effect of slopeland use policies on land use/cover change in Taiwan," Land Use Policy, Elsevier, vol. 99(C).
    19. Luca Simone Rizzo & Filippo Smerghetto & Maria Giuseppina Lucia & Raffaela Gabriella Rizzo, 2017. "Sprawl Dynamics in Rural–Urban Territories Highly Suited for Wine Production. Mapping Urban Growth and Changing Territorial Shapes in North-East Italy," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    20. Zhang, Yan & Chang, Xia & Liu, Yanfang & Lu, Yanchi & Wang, Yiheng & Liu, Yaolin, 2021. "Urban expansion simulation under constraint of multiple ecosystem services (MESs) based on cellular automata (CA)-Markov model: Scenario analysis and policy implications," Land Use Policy, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:128-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.