IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v23y2012i2p197-205.html
   My bibliography  Save this article

Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error

Author

Listed:
  • Péter Sólymos
  • Subhash Lele
  • Erin Bayne

Abstract

No abstract is available for this item.

Suggested Citation

  • Péter Sólymos & Subhash Lele & Erin Bayne, 2012. "Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error," Environmetrics, John Wiley & Sons, Ltd., vol. 23(2), pages 197-205, March.
  • Handle: RePEc:wly:envmet:v:23:y:2012:i:2:p:197-205
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2013. "Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 263(C), pages 244-250.
    2. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2017. "Reprint of: Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 359(C), pages 461-467.
    3. Vasilios Liordos & Jukka Jokimäki & Marja-Liisa Kaisanlahti-Jokimäki & Evangelos Valsamidis & Vasileios J. Kontsiotis, 2021. "Niche Analysis and Conservation of Bird Species Using Urban Core Areas," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    4. Zhao, Qing & Royle, J. Andrew, 2019. "Dynamic N-mixture models with temporal variability in detection probability," Ecological Modelling, Elsevier, vol. 393(C), pages 20-24.
    5. Matt Higham & Jay Ver Hoef & Lisa Madsen & Andy Aderman, 2021. "Adjusting a finite population block kriging estimator for imperfect detection," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    6. Wen‐Han Hwang & Richard Huggins & Jakub Stoklosa, 2022. "A model for analyzing clustered occurrence data," Biometrics, The International Biometric Society, vol. 78(2), pages 598-611, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:23:y:2012:i:2:p:197-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.