IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i11p2431-2439.html
   My bibliography  Save this article

Spatial modeling using frequentist approach for disease mapping

Author

Listed:
  • Mahmoud Torabi

Abstract

In this article, a generalized linear mixed model (GLMM) based on a frequentist approach is employed to examine spatial trend of asthma data. However, the frequentist analysis of GLMM is computationally difficult. On the other hand, the Bayesian analysis of GLMM has been computationally convenient due to the advent of Markov chain Monte Carlo algorithms. Recently developed data cloning (DC) method, which yields to maximum likelihood estimate, provides frequentist approach to complex mixed models and equally computationally convenient method. We use DC to conduct frequentist analysis of spatial models. The advantages of the DC approach are that the answers are independent of the choice of the priors, non-estimable parameters are flagged automatically, and the possibility of improper posterior distributions is completely avoided. We illustrate this approach using a real dataset of asthma visits to hospital in the province of Manitoba, Canada, during 2000--2010. The performance of the DC approach in our application is also studied through a simulation study.

Suggested Citation

  • Mahmoud Torabi, 2012. "Spatial modeling using frequentist approach for disease mapping," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2431-2439, July.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:11:p:2431-2439
    DOI: 10.1080/02664763.2012.711814
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.711814
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.711814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoud Torabi & Rhonda J. Rosychuk, 2011. "Spatio-temporal modelling using B-spline for disease mapping: analysis of childhood cancer trends," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1769-1781, October.
    2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    3. Lele, Subhash R. & Nadeem, Khurram & Schmuland, Byron, 2010. "Estimability and Likelihood Inference for Generalized Linear Mixed Models Using Data Cloning," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1617-1625.
    4. Hamilton, James D., 1986. "A standard error for the estimated state vector of a state-space model," Journal of Econometrics, Elsevier, vol. 33(3), pages 387-397, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud Torabi, 2014. "Hierarchical Bayesian bivariate disease mapping: analysis of children and adults asthma visits to hospital," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 612-621, March.
    2. Nushrat Nazia & Zahid Ahmad Butt & Melanie Lyn Bedard & Wang-Choi Tang & Hibah Sehar & Jane Law, 2022. "Methods Used in the Spatial and Spatiotemporal Analysis of COVID-19 Epidemiology: A Systematic Review," IJERPH, MDPI, vol. 19(14), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Craig Anderson & Louise M. Ryan, 2017. "A Comparison of Spatio-Temporal Disease Mapping Approaches Including an Application to Ischaemic Heart Disease in New South Wales, Australia," IJERPH, MDPI, vol. 14(2), pages 1-16, February.
    2. Torabi, Mahmoud, 2013. "Likelihood inference in generalized linear mixed measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 549-557.
    3. Torabi, Mahmoud, 2012. "Likelihood inference in generalized linear mixed models with two components of dispersion using data cloning," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4259-4265.
    4. Torabi, Mahmoud & Lele, Subhash R. & Prasad, Narasimha G.N., 2015. "Likelihood inference for small area estimation using data cloning," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 158-171.
    5. Torabi, Mahmoud & Shokoohi, Farhad, 2012. "Likelihood inference in small area estimation by combining time-series and cross-sectional data," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 213-221.
    6. Gabriele Fiorentini & Alessandro Galesi & Gabriel Pérez-Quirós & Enrique Sentana, 2018. "The rise and fall of the natural interest rate," Working Papers 1822, Banco de España.
    7. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    8. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    9. Jun Ma & Mark E. Wohar, 2013. "An Unobserved Components Model that Yields Business and Medium-Run Cycles," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(7), pages 1351-1373, October.
    10. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    11. Camba-Mendez, Gonzalo, 2012. "Conditional forecasts on SVAR models using the Kalman filter," Economics Letters, Elsevier, vol. 115(3), pages 376-378.
    12. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    13. Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190, January.
    14. Junming Li & Xiulan Han & Xiao Li & Jianping Yang & Xuejiao Li, 2018. "Spatiotemporal Patterns of Ground Monitored PM 2.5 Concentrations in China in Recent Years," IJERPH, MDPI, vol. 15(1), pages 1-15, January.
    15. repec:hal:wpspec:info:hdl:2441/2005 is not listed on IDEAS
    16. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    17. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    18. Matthieu LEMOINE & Odile CHAGNY, 2005. "Estimating the potential output of the euro area with a semi-structural multivariate Hodrick-Prescott filter," Computing in Economics and Finance 2005 344, Society for Computational Economics.
    19. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    20. Guilhem Bentoglio & Jacky Fayolle & Matthieu Lemoine, 2002. "La croissance européenne perturbée par un cycle de courte période," Économie et Statistique, Programme National Persée, vol. 359(1), pages 83-100.
    21. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:11:p:2431-2439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.