IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v316y2015icp194-210.html
   My bibliography  Save this article

Effects of ocean warming on growth and distribution of dinoflagellates associated with ciguatera fish poisoning in the Caribbean

Author

Listed:
  • Kibler, Steven R.
  • Tester, Patricia A.
  • Kunkel, Kenneth E.
  • Moore, Stephanie K.
  • Litaker, R. Wayne

Abstract

Projected water temperatures at six sites in the Gulf of Mexico and Caribbean Sea were used to forecast potential effects of climate change on the growth, abundance and distribution of Gambierdiscus and Fukuyoa species, dinoflagellates associated with ciguatera fish poisoning (CFP). Data from six sites in the Greater Caribbean were used to create statistically downscaled projections of water temperature using an ensemble of eleven global climate models and simulation RCP6.0 from the WCRP Coupled Model Intercomparison Project Phase 5 (CMIP5). Growth rates of five dinoflagellate species were estimated through the end of the 21st century using experimentally derived temperature vs. growth relationships for multiple strains of each species. The projected growth rates suggest the distribution and abundance of CFP-associated dinoflagellate species will shift substantially through 2099. Rising water temperatures are projected to increase the abundance and diversity of Gambierdiscus and Fukuyoa species in the Gulf of Mexico and along the U.S. southeast Atlantic coast. In the Caribbean Sea, where the highest average temperatures correlate with the highest rates of CFP, it is projected that Gambierdiscus caribaeus, Gambierdiscus belizeanus and Fukuyoa ruetzleri will become increasingly dominant. Conversely, the lower temperature-adapted species Gambierdiscus carolinianus and Gambierdiscus ribotype 2 are likely to become less prevalent in the Caribbean Sea and are expected to expand their ranges in the northern Gulf of Mexico and farther into the western Atlantic. The risks associated with CFP are also expected to change regionally, with higher incidence rates in the Gulf of Mexico and U.S. southeast Atlantic coast, with stable or slightly lower risks in the Caribbean Sea.

Suggested Citation

  • Kibler, Steven R. & Tester, Patricia A. & Kunkel, Kenneth E. & Moore, Stephanie K. & Litaker, R. Wayne, 2015. "Effects of ocean warming on growth and distribution of dinoflagellates associated with ciguatera fish poisoning in the Caribbean," Ecological Modelling, Elsevier, vol. 316(C), pages 194-210.
  • Handle: RePEc:eee:ecomod:v:316:y:2015:i:c:p:194-210
    DOI: 10.1016/j.ecolmodel.2015.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001500383X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher R. Loeffler & Luciana Tartaglione & Miriam Friedemann & Astrid Spielmeyer & Oliver Kappenstein & Dorina Bodi, 2021. "Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them," IJERPH, MDPI, vol. 18(6), pages 1-27, March.
    2. Kibler, Steven R. & Davenport, Eric D. & Tester, Patricia A. & Hardison, D. Ransom & Holland, William C. & Litaker, R. Wayne, 2017. "Gambierdiscus and Fukuyoa species in the greater Caribbean: Regional growth projections for ciguatera-associated dinoflagellates," Ecological Modelling, Elsevier, vol. 360(C), pages 204-218.
    3. Yixiao Xu & Mindy L Richlen & Justin D Liefer & Alison Robertson & David Kulis & Tyler B Smith & Michael L Parsons & Donald M Anderson, 2016. "Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    2. Jiří Mikšovský & Rudolf Brázdil & Petr Štĕpánek & Pavel Zahradníček & Petr Pišoft, 2014. "Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis," Climatic Change, Springer, vol. 125(2), pages 253-264, July.
    3. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    4. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    5. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    6. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    7. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    8. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    9. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    10. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    11. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    12. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Department of Economics Working Papers 2019-04, Department of Economics, Williams College.
    13. Catherine C. Ivanovich & Tianyi Sun & Doria R. Gordon & Ilissa B. Ocko, 2023. "Future warming from global food consumption," Nature Climate Change, Nature, vol. 13(3), pages 297-302, March.
    14. Erik O. Sterner & Tom Adawi & U. Martin Persson & Ulrika Lundqvist, 2019. "Knowing how and knowing when: unpacking public understanding of atmospheric CO2 accumulation," Climatic Change, Springer, vol. 154(1), pages 49-67, May.
    15. Matthew A. Thomas & Ting Lin, 2018. "A dual model for emulation of thermosteric and dynamic sea-level change," Climatic Change, Springer, vol. 148(1), pages 311-324, May.
    16. Schmitz, Christoph & van Meijl, Hans & Kyle, Page & Fujimori, Shinichiro & Gurgel, Angelo & Havlik, Petr & d'Croz, Daniel Mason & Popp, Alexander & Sands, Ron & Tabeau, Andrzej & van der Mensbrugghe, , 2013. "An agro-economic model comparison of cropland change until 2050," Conference papers 332351, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Kizildeniz, T. & Irigoyen, J.J & Pascual, I. & Morales, F., 2018. "Simulating the impact of climate change (elevated CO2 and temperature, and water deficit) on the growth of red and white Tempranillo grapevine in three consecutive growing seasons (2013–2015)," Agricultural Water Management, Elsevier, vol. 202(C), pages 220-230.
    18. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.
    19. Xunzhang, Pan & Wenying, Chen & Clarke, Leon E. & Lining, Wang & Guannan, Liu, 2017. "China's energy system transformation towards the 2°C goal: Implications of different effort-sharing principles," Energy Policy, Elsevier, vol. 103(C), pages 116-126.
    20. De Pinto, A., 2018. "The Global Effects of Widespread Adoption of Climate Smart Agriculture," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277524, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:316:y:2015:i:c:p:194-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.