IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v273y2014icp31-43.html
   My bibliography  Save this article

A simulation model coupling the behaviour and energetics of a breeding central place forager to assess the impact of environmental changes

Author

Listed:
  • Langton, R.
  • Davies, I.M.
  • Scott, B.E.

Abstract

During the breeding season, seabirds are obligate central place foragers, and this may make them vulnerable to impacts of environmental change. An individual based model of a pair of central place foragers and their offspring has been developed for the common guillemot (Uria aalge). The behavioural decisions of each adult depend on the state of themselves, their partner and their chick. The behaviour of the adults and the body masses of all three are followed over the chick rearing period. The model was used to investigate how chick fledging mass, proportion of time the chick was left unattended by its parents and change in adult mass are impacted by different foraging ranges, prey abundance and calorific content. Adults in the model typically declined in mass during the chick rearing period, although none died of starvation. Provisioning parents can, to some extent, increase foraging distance from the colony without a reduction in the proportion of chicks reaching a suitable fledging mass or increasing the time they are left unattended. The foraging range at which a decline in fledging success and colony attendance occurs is influenced by changes in either one or both of, prey abundance and prey quality. Patterns produced by the model are consistent with field observations and biological knowledge. As the model outputs can give an indication of the fitness consequences of environmental changes it can be used to address theoretical ecological questions as well as to inform marine spatial management.

Suggested Citation

  • Langton, R. & Davies, I.M. & Scott, B.E., 2014. "A simulation model coupling the behaviour and energetics of a breeding central place forager to assess the impact of environmental changes," Ecological Modelling, Elsevier, vol. 273(C), pages 31-43.
  • Handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:31-43
    DOI: 10.1016/j.ecolmodel.2013.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013005292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stillman, Richard A., 2008. "MORPH—An individual-based model to predict the effect of environmental change on foraging animal populations," Ecological Modelling, Elsevier, vol. 216(3), pages 265-276.
    2. S. Lewis & T. N. Sherratt & K. C. Hamer & S. Wanless, 2001. "Evidence of intra-specific competition for food in a pelagic seabird," Nature, Nature, vol. 412(6849), pages 816-819, August.
    3. Topping, Chris J. & Høye, Toke T. & Olesen, Carsten Riis, 2010. "Opening the black box—Development, testing and documentation of a mechanistically rich agent-based model," Ecological Modelling, Elsevier, vol. 221(2), pages 245-255.
    4. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simons-Legaard, Erin & Legaard, Kasey & Weiskittel, Aaron, 2015. "Predicting aboveground biomass with LANDIS-II: A global and temporal analysis of parameter sensitivity," Ecological Modelling, Elsevier, vol. 313(C), pages 325-332.
    2. Merel Goedegebuure & Jessica Melbourne-Thomas & Stuart P Corney & Clive R McMahon & Mark A Hindell, 2018. "Modelling southern elephant seals Mirounga leonina using an individual-based model coupled with a dynamic energy budget," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-37, March.
    3. Lees, Kirsty J. & Guerin, Andrew J. & Masden, Elizabeth A., 2016. "Using kernel density estimation to explore habitat use by seabirds at a marine renewable wave energy test facility," Marine Policy, Elsevier, vol. 63(C), pages 35-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    2. Haythorne, Sean & Skabar, Andrew, 2013. "An improved pattern-guided evolution approach for the development of adaptive individual-based ecological models," Ecological Modelling, Elsevier, vol. 252(C), pages 72-82.
    3. Crouse, Kristin N. & Desai, Nisarg P. & Cassidy, Kira A. & Stahler, Erin E. & Lehman, Clarence L. & Wilson, Michael L., 2022. "Larger territories reduce mortality risk for chimpanzees, wolves, and agents: Multiple lines of evidence in a model validation framework," Ecological Modelling, Elsevier, vol. 471(C).
    4. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    5. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    6. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    7. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    8. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    9. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    10. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    11. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    12. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    13. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    14. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    15. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    16. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    17. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    18. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    19. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    20. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:31-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.