IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v267y2013icp148-157.html
   My bibliography  Save this article

Modeling the carbon dynamics of the dryland ecosystems in Xinjiang, China from 1981 to 2007—The spatiotemporal patterns and climate controls

Author

Listed:
  • Li, Chaofan
  • Zhang, Chi
  • Luo, Geping
  • Chen, Xi

Abstract

Dryland ecosystems are particularly sensitive to environmental stresses. Despite their importance to the global carbon (C) cycle, responses of the Central Asian dryland to the rapid climate change in recent decades are still unclear. Using AEM, a newly developed, spatially explicit process model for dryland ecosystems, a case study was conducted in Xinjiang, a 1.66Mkm2 dryland in eastern Central Asia. The goal was to assess the impacts of environmental changes (climate change and elevated CO2) on the regional C dynamics from 1981 to 2007. The results indicated that over the last three decades, Xinjiang acted as a C sink of 138Tg (1T=1012), 78.5% of which was contributed by increased vegetation C. The C dynamic overall was dominated by the CO2 fertilization effect, which resulted in 124Tg C sequestration from 1981 to 2007. Temporal pattern of C dynamic was controlled by the climate change, which resulted in 10Tg C sequestration. The model simulation also indicated that the ecosystem's response to the combined effect by CO2 and climate change together was nonlinear. Among climate factors, temperature change resulted in 12Tg C loss, while precipitation change resulted in 24Tg C sequestration. The rising temperature stimulated heterotrophic respiration, causing 17Tg C loss from the soil. The climate change had complex effects on the regional C dynamics. It caused a 13Tg C loss in southern Xinjiang, while resulting in a 23Tg C sequestration in the north. The region acted as a C source in the 1980s, mainly due to the drought from 1983 to 1986, but has turned into a C sink since 1990. Unlike other dryland plant types, the irrigated crop and the phreatophytic shrub were barely affected by changes in precipitation. The ecosystem complexity in the dryland highlights the importance of addressing environmental heterogeneity with high resolution datasets and considering the characteristic ecophysiology of dryland plants with process-based modeling in climate change studies.

Suggested Citation

  • Li, Chaofan & Zhang, Chi & Luo, Geping & Chen, Xi, 2013. "Modeling the carbon dynamics of the dryland ecosystems in Xinjiang, China from 1981 to 2007—The spatiotemporal patterns and climate controls," Ecological Modelling, Elsevier, vol. 267(C), pages 148-157.
  • Handle: RePEc:eee:ecomod:v:267:y:2013:i:c:p:148-157
    DOI: 10.1016/j.ecolmodel.2013.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013002913
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    2. Zhang, Chi & Li, Chaofan & Luo, Geping & Chen, Xi, 2013. "Modeling plant structure and its impacts on carbon and water cycles of the Central Asian arid ecosystem in the context of climate change," Ecological Modelling, Elsevier, vol. 267(C), pages 158-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping Liu & Xi Chen & Chi Zhang & Geping Luo & Ping Liu & Xi Chen & Chi Zhang & Geping Luo & Xi Chen & Chi Zhang & Geping Luo, 2019. "Remote Sensing Monitoring Shows that Climate Change has a Significant Impact on Vegetation Ecosystem in Central Asia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 17(3), pages 81-87, February.
    2. Xiuliang Yuan & Jie Bai, 2018. "Future Projected Changes in Local Evapotranspiration Coupled with Temperature and Precipitation Variation," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    3. Chaofan Li & Qifei Han & Geping Luo & Chengyi Zhao & Shoubo Li & Yuangang Wang & Dongsheng Yu, 2018. "Effects of Cropland Conversion and Climate Change on Agrosystem Carbon Balance of China’s Dryland: A Typical Watershed Study," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    4. Fang, Xia & Chen, Zhi & Guo, Xulin & Zhu, Shihua & Liu, Tong & Li, Chaofan & He, Biao, 2019. "Impacts and uncertainties of climate/CO2 change on net primary productivity in Xinjiang, China (2000–2014): A modelling approach," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.
    5. Peng Cai & Chaofan Li & Geping Luo & Chi Zhang & Friday Uchenna Ochege & Steven Caluwaerts & Lesley De Cruz & Rozemien De Troch & Sara Top & Piet Termonia & Philippe De Maeyer, 2020. "The Responses of the Ecosystems in the Tianshan North Slope under Multiple Representative Concentration Pathway Scenarios in the Middle of the 21st Century," Sustainability, MDPI, vol. 12(1), pages 1-19, January.
    6. Zhu, Shihua & Fang, Xia & Cao, Liangzhong & Hang, Xin & Xie, Xiaoping & Sun, Liangxiao & Li, Yachun, 2023. "Multivariate drives and their interactive effects on the ratio of transpiration to evapotranspiration over Central Asia ecosystems," Ecological Modelling, Elsevier, vol. 478(C).
    7. Haoyang Du & Chen Zhou & Haoqing Tang & Xiaolong Jin & Dengshuai Chen & Penghui Jiang & Manchun Li, 2021. "Simulation and estimation of future precipitation changes in arid regions: a case study of Xinjiang, Northwest China," Climatic Change, Springer, vol. 167(3), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaofan Li & Qifei Han & Geping Luo & Chengyi Zhao & Shoubo Li & Yuangang Wang & Dongsheng Yu, 2018. "Effects of Cropland Conversion and Climate Change on Agrosystem Carbon Balance of China’s Dryland: A Typical Watershed Study," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    2. Jieming Chou & Yidan Hao & Yuan Xu & Weixing Zhao & Yuanmeng Li & Haofeng Jin, 2023. "Forest Carbon Sequestration Potential in China under Different SSP-RCP Scenarios," Sustainability, MDPI, vol. 15(9), pages 1-12, April.
    3. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    4. Zhu, Shihua & Fang, Xia & Cao, Liangzhong & Hang, Xin & Xie, Xiaoping & Sun, Liangxiao & Li, Yachun, 2023. "Multivariate drives and their interactive effects on the ratio of transpiration to evapotranspiration over Central Asia ecosystems," Ecological Modelling, Elsevier, vol. 478(C).
    5. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    6. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    7. Qi Fu & Mengfan Gao & Yue Wang & Tinghui Wang & Xu Bi & Jinhua Chen, 2022. "Spatiotemporal Patterns and Drivers of the Carbon Budget in the Yangtze River Delta Region, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    8. Jin, Ming & Han, Xulong & Li, Mingyu, 2023. "Trade-offs of multiple urban ecosystem services based on land-use scenarios in the Tumen River cross-border area," Ecological Modelling, Elsevier, vol. 482(C).
    9. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    10. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    11. Youngsu Park & Yujun Sun, 2018. "Sustainable Forest Management in North-East Asia: A Comparative Assessment between China and Republic of Korea," International Journal of Sciences, Office ijSciences, vol. 7(04), pages 102-114, April.
    12. Zhang, Fan & Li, Changsheng & Wang, Zheng & Glidden, Stanley & Grogan, Danielle S. & Li, Xuxiang & Cheng, Yan & Frolking, Steve, 2015. "Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981–2000," Ecological Modelling, Elsevier, vol. 312(C), pages 1-10.
    13. Mingjie Tian & Zhun Chen & Wei Wang & Taizheng Chen & Haiying Cui, 2022. "Land-Use Carbon Emissions in the Yellow River Basin from 2000 to 2020: Spatio-Temporal Patterns and Driving Mechanisms," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    14. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    15. Cong Zhang & Xiaojun Yao & Guoyu Wang & Huian Jin & Te Sha & Xinde Chu & Juan Zhang & Juan Cao, 2022. "Temporal and Spatial Variation of Land Use and Vegetation in the Three–North Shelter Forest Program Area from 2000 to 2020," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    16. Zhencheng Xing & Yanyan Ma & Lan Luo & Haikun Wang, 2024. "Harmonizing economies and ecologies: Towards an equitable provincial carbon quota allocation for China’s peak emissions," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    17. Yunxiu Ma & Zhanjun Xu, 2023. "Construction of Low-Carbon Land Use and Management System in Coal Mining Areas," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    18. Decheng Zhou & Lu Hao & John B. Kim & Peilong Liu & Cen Pan & Yongqiang Liu & Ge Sun, 2019. "Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau," Climatic Change, Springer, vol. 156(1), pages 31-50, September.
    19. Lijuan Miao & Feng Zhu & Zhanli Sun & John C. Moore & Xuefeng Cui, 2016. "China’s Land-Use Changes during the Past 300 Years: A Historical Perspective," IJERPH, MDPI, vol. 13(9), pages 1-16, August.
    20. Jian Ni, 2013. "Carbon storage in Chinese terrestrial ecosystems: approaching a more accurate estimate," Climatic Change, Springer, vol. 119(3), pages 905-917, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:267:y:2013:i:c:p:148-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.