IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12486-d1218829.html
   My bibliography  Save this article

Construction of Low-Carbon Land Use and Management System in Coal Mining Areas

Author

Listed:
  • Yunxiu Ma

    (National Experimental Teaching Demonstration Center of Agricultural Resources and Environment, College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China)

  • Zhanjun Xu

    (National Experimental Teaching Demonstration Center of Agricultural Resources and Environment, College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China)

Abstract

In 2021, the Chinese government set the national development goal of ‘carbon peak and carbon neutrality’. Defining the carbon cycle process of land use is the first step for the implementation of low-carbon land use in coal mining areas. In this study, the carbon income and expenditure of land use in coal mining areas were analyzed theoretically using normative analysis, and thus the corresponding conceptual model of the carbon budget was formed. Concretely, carbon emissions from the coal industry were mainly from two aspects, that is, soil carbon emissions caused by drastic changes in land use in the coal exploration and exploitation stage and greenhouse gas emissions in the coal collection stage. Moreover, carbon in the air is sequestered in the soil when exploration land and mining land were reclaimed into woodland and grassland. Meanwhile, to optimize the utilization of land resources and realize the land low-carbon pattern from the management perspective, the logic system of land low-carbon use management in coal mining areas was explored using normative analysis and literature review. Thus, a complete management system including the management objective, subject, object, means, and implementation guarantee mechanism was built in detail. This study provided ideas for carbon reduction in coal mining areas and laid a decision-making basis for regional low-carbon land use and sustainable development.

Suggested Citation

  • Yunxiu Ma & Zhanjun Xu, 2023. "Construction of Low-Carbon Land Use and Management System in Coal Mining Areas," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12486-:d:1218829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    2. Pang, Jun & Timilsina, Govinda, 2021. "How would an emissions trading scheme affect provincial economies in China: Insights from a computable general equilibrium model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect," Applied Energy, Elsevier, vol. 87(6), pages 1804-1814, June.
    4. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    5. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    6. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    7. Golub, Alla & Hertel, Thomas & Lee, Huey-Lin & Rose, Steven & Sohngen, Brent, 2009. "The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry," Resource and Energy Economics, Elsevier, vol. 31(4), pages 299-319, November.
    8. Churkina, Galina, 2008. "Modeling the carbon cycle of urban systems," Ecological Modelling, Elsevier, vol. 216(2), pages 107-113.
    9. Lin, Boqiang & Jia, Zhijie, 2018. "The energy, environmental and economic impacts of carbon tax rate and taxation industry: A CGE based study in China," Energy, Elsevier, vol. 159(C), pages 558-568.
    10. Jin, Gui & Guo, Baishu & Deng, Xiangzheng, 2020. "Is there a decoupling relationship between CO2 emission reduction and poverty alleviation in China?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    11. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    12. Robert Machowski, 2022. "Changes in the Landform and Water Conditions of the Industri-Alized Urban Area as a Result of Mining Activities," Land, MDPI, vol. 11(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Haisheng & Dong, Wanhao & Zhou, Qian, 2021. "A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: Analysis based on the computable general equilibrium model," Energy Policy, Elsevier, vol. 156(C).
    2. Zhang, Weijie & Zhang, Ning & Yu, Yanni, 2019. "Carbon mitigation effects and potential cost savings from carbon emissions trading in China's regional industry," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 1-11.
    3. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    4. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Le, TN-Lan & Leyva-de la Hiz, Dante I., 2021. "Markov-switching dependence between artificial intelligence and carbon price: The role of policy uncertainty in the era of the 4th industrial revolution and the effect of COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    5. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).
    6. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    7. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    8. Wanlin Yu & Jinlong Luo, 2022. "Impact on Carbon Intensity of Carbon Emission Trading—Evidence from a Pilot Program in 281 Cities in China," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    9. Mengfei Jiang & Xi Liang & David Reiner & Boqiang Lin & Maosheng Duan, 2018. "Stakeholder Views on Interactions between Low-carbon Policies and Carbon Markets in China: Lessons from the Guangdong ETS," Working Papers EPRG 1805, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    11. Yu, Xiaolin & Wan, Kai & Du, Qunyang, 2023. "Can carbon market policies achieve a “point-to-surface” effect?—Quasi-experimental evidence from China," Energy Policy, Elsevier, vol. 183(C).
    12. Provaty, Sagira Sultana & Hasan, Mostafa Monzur & Luo, Le, 2024. "Organization capital and GHG emissions," Energy Economics, Elsevier, vol. 131(C).
    13. Wugan Cai & Peiyun Ye, 2022. "Local-neighborhood effects of different environmental regulations on green innovation: evidence from prefecture level cities of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4810-4834, April.
    14. Chaofeng Lyu & Shuxin Deng & Zewei Dai, 2023. "Emissions Trading Systems, Structure Adjustment and Air Pollution Reduction: Evidence from Enterprises in China," Sustainability, MDPI, vol. 15(7), pages 1-20, April.
    15. Lin, Zewei & Wang, Peng & Ren, Songyan & Zhao, Daiqing, 2023. "Economic and environmental impacts of EVs promotion under the 2060 carbon neutrality target—A CGE based study in Shaanxi Province of China," Applied Energy, Elsevier, vol. 332(C).
    16. Yan, Kai & Zhang, Wei & Shen, Dehua, 2020. "Stylized facts of the carbon emission market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    17. Mardones, Cristian & Ortega, José, 2021. "Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?," Applied Energy, Elsevier, vol. 298(C).
    18. Ekholm, Tommi, 2020. "Optimal forest rotation under carbon pricing and forest damage risk," Forest Policy and Economics, Elsevier, vol. 115(C).
    19. Qi, Xiaoyuan & Han, Ying, 2023. "Research on the evolutionary strategy of carbon market under “dual carbon” goal: From the perspective of dynamic quota allocation," Energy, Elsevier, vol. 274(C).
    20. Yue‐Jun Zhang & Wei Shi & Lin Jiang, 2020. "Does China's carbon emissions trading policy improve the technology innovation of relevant enterprises?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 872-885, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12486-:d:1218829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.