Phytoplankton abundance in relation to cultural eutrophication at the land-ocean boundary of Sunderbans, NE Coast of Bay of Bengal, India
Author
Abstract
Suggested Citation
DOI: 10.1007/s13412-011-0022-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Christopher A. Klausmeier & Elena Litchman & Tanguy Daufresne & Simon A. Levin, 2004. "Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton," Nature, Nature, vol. 429(6988), pages 171-174, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sumana Banerjee & Abhra Chanda & Tuhin Ghosh & Emilie Cremin & Fabrice G. Renaud, 2023. "A Qualitative Assessment of Natural and Anthropogenic Drivers of Risk to Sustainable Livelihoods in the Indian Sundarban," Sustainability, MDPI, vol. 15(7), pages 1-27, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wan, Zhenwen & Bi, Hongsheng, 2014. "Comparing model scenarios of variable plankton N/P ratio versus the constant one for the application in the Baltic Sea," Ecological Modelling, Elsevier, vol. 272(C), pages 28-39.
- Li, Yu & Waite, Anya M. & Gal, Gideon & Hipsey, Matthew R., 2013. "An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment," Ecological Modelling, Elsevier, vol. 252(C), pages 196-213.
- Clark, James R. & Daines, Stuart J. & Lenton, Timothy M. & Watson, Andrew J. & Williams, Hywel T.P., 2011. "Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters," Ecological Modelling, Elsevier, vol. 222(23), pages 3823-3837.
- Dittrich, M. & Wehrli, B. & Reichert, P., 2009. "Lake sediments during the transient eutrophication period: Reactive-transport model and identifiability study," Ecological Modelling, Elsevier, vol. 220(20), pages 2751-2769.
- Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
- Jiancai Deng & Fang Chen & Weiping Hu & Xin Lu & Bin Xu & David P. Hamilton, 2019. "Variations in the Distribution of Chl- a and Simulation Using a Multiple Regression Model," IJERPH, MDPI, vol. 16(22), pages 1-16, November.
- Han, Yue & Zhou, Yuntao, 2022. "Investigating biophysical control of marine phytoplankton dynamics via Bayesian mechanistic modeling," Ecological Modelling, Elsevier, vol. 474(C).
- Daniel Graeber & Mark J. McCarthy & Tom Shatwell & Dietrich Borchardt & Erik Jeppesen & Martin Søndergaard & Torben L. Lauridsen & Thomas A. Davidson, 2024. "Consistent stoichiometric long-term relationships between nutrients and chlorophyll-a across shallow lakes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Arhonditsis, George B. & Stow, Craig A. & Paerl, Hans W. & Valdes-Weaver, Lexia M. & Steinberg, Laura J. & Reckhow, Kenneth H., 2007. "Delineation of the role of nutrient dynamics and hydrologic forcing on phytoplankton patterns along a freshwater–marine continuum," Ecological Modelling, Elsevier, vol. 208(2), pages 230-246.
- Tsakalakis, Ioannis & Pahlow, Markus & Oschlies, Andreas & Blasius, Bernd & Ryabov, Alexey B., 2018. "Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity," Ecological Modelling, Elsevier, vol. 384(C), pages 241-248.
- Flynn, Kyle F. & Chapra, Steven C. & Suplee, Michael W., 2013. "Modeling the lateral variation of bottom-attached algae in rivers," Ecological Modelling, Elsevier, vol. 267(C), pages 11-25.
- Baklouti, M. & Chevalier, C. & Bouvy, M. & Corbin, D. & Pagano, M. & Troussellier, M. & Arfi, R., 2011. "A study of plankton dynamics under osmotic stress in the Senegal River Estuary, West Africa, using a 3D mechanistic model," Ecological Modelling, Elsevier, vol. 222(15), pages 2704-2721.
- Chen, Bingzhang & Smith, S. Lan, 2018. "Optimality-based approach for computationally efficient modeling of phytoplankton growth, chlorophyll-to-carbon, and nitrogen-to-carbon ratios," Ecological Modelling, Elsevier, vol. 385(C), pages 197-212.
- Merico, Agostino & Bruggeman, Jorn & Wirtz, Kai, 2009. "A trait-based approach for downscaling complexity in plankton ecosystem models," Ecological Modelling, Elsevier, vol. 220(21), pages 3001-3010.
More about this item
Keywords
Cultural eutrophication; Hooghly estuary; Phytoplankton; Nutrients; Season;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jenvss:v:1:y:2011:i:3:p:169-180. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.