IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v368y2018icp404-410.html
   My bibliography  Save this article

A probabilistic method to enhance understanding of nutrient limitation dynamics of phytoplankton

Author

Listed:
  • Liang, Zhongyao
  • Wu, Sifeng
  • Chen, Huili
  • Yu, Yanhong
  • Liu, Yong

Abstract

Determination of the limiting nutrient of phytoplankton is critical to the lake eutrophication management. The average value of total nitrogen/total phosphorus (TN/TP) ratio is widely used to determine the limiting nutrient; while it suffers from the risk of the incorrect description of data and neglecting dynamics of the nutrient limitation. A probabilistic method was thereby proposed in this study to explore dynamics of nutrient limitation, including (a) indicator definition as the probability of TN/TP ratio failing in Redfield ratio line (PFR), indicating the possibility of TN limitation, to improve a probabilistic measure for the nutrient limitation; (b) Bayesian ANOVA analysis for posterior distributions of different treatments; and (c) dynamics determination as PFRs to show dynamics of nutrient limitation. Lake Xingyun in Southwestern China was taken as a case to explore the interannual and seasonal dynamics of the nutrient limitation. According to modeling results, we deducted that (a) for the interannual dynamics, the limiting nutrient shifted from TP to TN; and (b) for the seasonal dynamics, TN and TP were co-limiting. Deductions were further confirmed by the observed data. With the proposed probabilistic method, the co-limitation of TN and TP was identified for the seasonal dynamics; while using the average ratio solely denied the possibility of co-limitation. The current study also revealed that, due to neglecting the interannual and seasonal dynamics of nutrient limitation, the average ratio might mislead the eutrophication management strategy by recommending reducing TN and TP concentration together. The proposed probabilistic method demonstrated that TN was the limiting nutrient during the growing season of the phytoplankton in recent years and actions should focus on the TN concentration reduction.

Suggested Citation

  • Liang, Zhongyao & Wu, Sifeng & Chen, Huili & Yu, Yanhong & Liu, Yong, 2018. "A probabilistic method to enhance understanding of nutrient limitation dynamics of phytoplankton," Ecological Modelling, Elsevier, vol. 368(C), pages 404-410.
  • Handle: RePEc:eee:ecomod:v:368:y:2018:i:c:p:404-410
    DOI: 10.1016/j.ecolmodel.2017.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017304465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yu & Waite, Anya M. & Gal, Gideon & Hipsey, Matthew R., 2013. "An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment," Ecological Modelling, Elsevier, vol. 252(C), pages 196-213.
    2. Christopher T. Reinhard & Noah J. Planavsky & Benjamin C. Gill & Kazumi Ozaki & Leslie J. Robbins & Timothy W. Lyons & Woodward W. Fischer & Chunjiang Wang & Devon B. Cole & Kurt O. Konhauser, 2017. "Evolution of the global phosphorus cycle," Nature, Nature, vol. 541(7637), pages 386-389, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhao & Mingguo Wang & Zhongyao Liang & Qichao Zhou, 2020. "Identification of Regime Shifts and Their Potential Drivers in the Shallow Eutrophic Lake Yilong, Southwest China," Sustainability, MDPI, vol. 12(9), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang Zheng & Anwen Zhou & Swapan K. Sahoo & Morrison R. Nolan & Chadlin M. Ostrander & Ruoyu Sun & Ariel D. Anbar & Shuhai Xiao & Jiubin Chen, 2023. "Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Guoxiong Chen & Qiuming Cheng & Timothy W. Lyons & Jun Shen & Frits Agterberg & Ning Huang & Molei Zhao, 2022. "Reconstructing Earth’s atmospheric oxygenation history using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Matthew P. Brady & Rosalie Tostevin & Nicholas J. Tosca, 2022. "Marine phosphate availability and the chemical origins of life on Earth," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Benjamin T. Uveges & Gareth Izon & Shuhei Ono & Nicolas J. Beukes & Roger E. Summons, 2023. "Reconciling discrepant minor sulfur isotope records of the Great Oxidation Event," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Joanne S. Boden & Juntao Zhong & Rika E. Anderson & Eva E. Stüeken, 2024. "Timing the evolution of phosphorus-cycling enzymes through geological time using phylogenomics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Fenocchi, Andrea & Rogora, Michela & Morabito, Giuseppe & Marchetto, Aldo & Sibilla, Stefano & Dresti, Claudia, 2019. "Applicability of a one-dimensional coupled ecological-hydrodynamic numerical model to future projections in a very deep large lake (Lake Maggiore, Northern Italy/Southern Switzerland)," Ecological Modelling, Elsevier, vol. 392(C), pages 38-51.
    7. Yafang Song & Fred T. Bowyer & Benjamin J. W. Mills & Andrew S. Merdith & Paul B. Wignall & Jeff Peakall & Shuichang Zhang & Xiaomei Wang & Huajian Wang & Donald E. Canfield & Graham A. Shields & Simo, 2023. "Dynamic redox and nutrient cycling response to climate forcing in the Mesoproterozoic ocean," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yongchuan Chen & Qiao Chen & Degang Zhang & Li Tang, 2022. "Variation in Sediment Available-Phosphorus in Dianchi Lake and Its Impacts on Algal Growth," IJERPH, MDPI, vol. 19(22), pages 1-14, November.
    9. Ernest Chi Fru & Jalila Al Bahri & Christophe Brosson & Olabode Bankole & Jérémie Aubineau & Abderrazzak El Albani & Alexandra Nederbragt & Anthony Oldroyd & Alasdair Skelton & Linda Lowhagen & David , 2023. "Transient fertilization of a post-Sturtian Snowball ocean margin with dissolved phosphate by clay minerals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Lennart Ramme & Tatiana Ilyina & Jochem Marotzke, 2024. "Moderate greenhouse climate and rapid carbonate formation after Marinoan snowball Earth," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:368:y:2018:i:c:p:404-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.