IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10747-d900637.html
   My bibliography  Save this article

The Environmental Risk Assessment of Fire and Explosion in Storage Tanks of Petroleum Products

Author

Listed:
  • Razieh Doregar Zavareh

    (Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran)

  • Tooraj Dana

    (Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran)

  • Emad Roayaei

    (Department of Health, Safety &Environment, Petroleum University of Technology, Abadan P.O. Box 63187-14317, Iran)

  • Seyed Massoud Monavari

    (Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran)

  • Seyed Ali Jozi

    (Department of Environment, North Tehran Branch, Islamic Azad University, Tehran 1651153511, Iran)

Abstract

The present study provides a framework for assessing the environmental risk associated with fire and explosion of gasoline storage tanks in oil depots. The proposed framework includes three main steps: problem formulation, risk analysis, and risk description. The necessary basic details were identified and collected in formulating the problem. The source, pathway, receptor (SPR) model was employed in the risk analysis process. Each part was analyzed using tools that provide appropriate results and maintain the model integrity; additionally, the findings can be used in the whole process. The Dow Fire and Explosion Index (F&EI) was deployed to scrutinize the source, the pollutant dispersion and transmission path characteristics were measured to inspect the pathway, and the vulnerability indicators of the receptor and the degree of impact were determined to scrutinize the receptor. Finally, the risk assessment results were presented in the form of risk description tables. The purpose of this integration was to develop a framework thoroughly evaluating the risk associated with fire and explosion to the point of environmental consequences and providing a better understanding of the outcomes. This study, conducted for the first time specifically for an oil depot, provides an exhaustive view highly contributing to managers and decision makers.

Suggested Citation

  • Razieh Doregar Zavareh & Tooraj Dana & Emad Roayaei & Seyed Massoud Monavari & Seyed Ali Jozi, 2022. "The Environmental Risk Assessment of Fire and Explosion in Storage Tanks of Petroleum Products," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10747-:d:900637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2013. "Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives," Ecological Modelling, Elsevier, vol. 250(C), pages 25-33.
    2. Necci, Amos & Argenti, Francesca & Landucci, Gabriele & Cozzani, Valerio, 2014. "Accident scenarios triggered by lightning strike on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 30-46.
    3. Zinke, Ronald & Melnychuk, Julia & Köhler, Florian & Krause, Ulrich, 2020. "Quantitative risk assessment of emissions from external floating roof tanks during normal operation and in case of damages using Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Xie, Shuyi & Dong, Shaohua & Chen, Yinuo & Peng, Yujie & Li, Xincai, 2021. "A novel risk evaluation method for fire and explosion accidents in oil depots using bow-tie analysis and risk matrix analysis method based on cloud model theory," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Papadopoulou, Maria P. & Antoniou, Constantinos, 2014. "Environmental impact assessment methodological framework for liquefied natural gas terminal and transport network planning," Energy Policy, Elsevier, vol. 68(C), pages 306-319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel A. De Luque-Villa & Daniel Armando Robledo-Buitrago & Claudia Patricia Gómez-Rendón, 2024. "Holistic Environmental Risk Index for Oil and Gas Industry in Colombia," Sustainability, MDPI, vol. 16(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grechi, Laura & Franco, Antonio & Palmeri, Luca & Pivato, Alberto & Barausse, Alberto, 2016. "An ecosystem model of the lower Po river for use in ecological risk assessment of xenobiotics," Ecological Modelling, Elsevier, vol. 332(C), pages 42-58.
    2. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    3. Xue Li & Ning Zhou & Bing Chen & Qian Zhang & Vamegh Rasouli & Xuanya Liu & Weiqiu Huang & Lingchen Kong, 2021. "Numerical Simulation of Leakage and Diffusion Process of LNG Storage Tanks," Energies, MDPI, vol. 14(19), pages 1-14, October.
    4. Li Li & Xiaoping Zhou & Lan Yang & Jinglong Duan & Zhuo Zeng, 2022. "Spatio-Temporal Characteristics and Influencing Factors of Ecological Risk in China’s North–South Transition Zone," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    5. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    6. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    7. Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2015. "Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 78-92.
    8. Andrzej Bialas, 2022. "Towards a Software Tool Supporting Decisions in Planning Heap Revitalization Processes," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    9. Li, Weijun & Sun, Qiqi & Zhang, Jiwang & Zhang, Laibin, 2024. "Quantitative risk assessment of industrial hot work using Adaptive Bow Tie and Petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Jiajun Wang & Zhichao He & Wenguo Weng, 2020. "A review of the research into the relations between hazards in multi-hazard risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2003-2026, December.
    11. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    12. Landucci, Gabriele & Argenti, Francesca & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 30-43.
    13. Xie, Shuyi & Huang, Zimeng & Wu, Gang & Luo, Jinheng & Li, Lifeng & Ma, Weifeng & Wang, Bohong, 2024. "Combining precursor and Cloud Leaky noisy-OR logic gate Bayesian network for dynamic probability analysis of major accidents in the oil depots," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Andrzej Białas & Artur Kozłowski, 2024. "Computer-Aided Planning for Land Development of Post-Mining Degraded Areas," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    15. Ali Saleh Alammary, 2022. "How to Decide the Proportion of Online to Face-to-Face Components of a Blended Course? A Delphi Study," SAGE Open, , vol. 12(4), pages 21582440221, November.
    16. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    17. Li, Yuntao & Wang, Yumeng & Lai, Yuying & Shuai, Jian & Zhang, Laibin, 2023. "Monte Carlo-based quantitative risk assessment of parking areas for vehicles carrying hazardous chemicals," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Liudan Jiao & Yinghan Zhu & Xiaosen Huo & Ya Wu & Yu Zhang, 2023. "Resilience assessment of metro stations against rainstorm disaster based on cloud model: a case study in Chongqing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2311-2337, March.
    19. Qingfu Li & Huade Zhou & Qiang Ma & Linfang Lu, 2021. "Evaluation of Serviceability of Canal Lining Based on AHP–Simple Correlation Function Method–Cloud Model: A Case Study in Henan Province, China," Sustainability, MDPI, vol. 13(21), pages 1-25, November.
    20. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10747-:d:900637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.