IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i22p3113-3122.html
   My bibliography  Save this article

Ecological network analyses and their use for establishing reference domain in functional assessment of an estuary

Author

Listed:
  • Christian, Robert R.
  • Brinson, Mark M.
  • Dame, James K.
  • Johnson, Galen
  • Peterson, Charles H.
  • Baird, Daniel

Abstract

We developed a framework to use ecological network analysis for functional assessment of large aquatic ecosystems in the context of ecosystem-based management. We established a reference domain for the Neuse River Estuary, North Carolina, USA, from changes over time. Four reference network models of the trophic structure of the estuary during early and late summers of 1997 and 1998 were constructed and analyzed. The estuary has experienced various symptoms of eutrophication during the past 20 years, including summer-time hypoxia and fish kills. The networks were used to quantify indices of nominal trophic dynamics and their variation. The ratio of biomass of nekton to that of macrobenthos, derived from network construction, was used to index severity of eutrophication and to promote accessibility of ecological network analysis to environmental management. The ratio increased from early to late summer, and network metrics demonstrated a variety of responses in association with that change. Some variables from network analysis, especially related to consumers, reflected some but not all of this change. Others reflected the most severe increase in the ratio in late summer 1997 when hypoxia was most extensive. We evaluated uncertainty and the modulating effects of hierarchy by comparing variation of input biomasses with integrative response variables. Relative variation in input variables was generally greater than that of the integrative response variables as predicted by hierarchy theory. Ecological network analysis has previously served as support for ecosystem-based management of large aquatic systems with some success. However, its use can be enhanced by making it more accessible to environmental managers and policy makers. Ways to do this include promoting simple metrics from network construction and explicitly associating network analysis to concepts familiar to the management community, such as functional assessment and reference.

Suggested Citation

  • Christian, Robert R. & Brinson, Mark M. & Dame, James K. & Johnson, Galen & Peterson, Charles H. & Baird, Daniel, 2009. "Ecological network analyses and their use for establishing reference domain in functional assessment of an estuary," Ecological Modelling, Elsevier, vol. 220(22), pages 3113-3122.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:22:p:3113-3122
    DOI: 10.1016/j.ecolmodel.2009.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009004931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dame, James K. & Christian, Robert R., 2008. "Evaluation of ecological network analysis: Validation of output," Ecological Modelling, Elsevier, vol. 210(3), pages 327-338.
    2. Fabiano, M. & Vassallo, P. & Vezzulli, L. & Salvo, V.S. & Marques, J.C., 2004. "Temporal and spatial change of exergy and ascendency in different benthic marine ecosystems," Energy, Elsevier, vol. 29(11), pages 1697-1712.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    2. Baird, Dan & Fath, Brian D. & Ulanowicz, Robert E. & Asmus, Harald & Asmus, Ragnhild, 2009. "On the consequences of aggregation and balancing of networks on system properties derived from ecological network analysis," Ecological Modelling, Elsevier, vol. 220(23), pages 3465-3471.
    3. Schaubroeck, Thomas & Staelens, Jeroen & Verheyen, Kris & Muys, Bart & Dewulf, Jo, 2012. "Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem," Ecological Modelling, Elsevier, vol. 247(C), pages 144-156.
    4. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    5. Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2013. "Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives," Ecological Modelling, Elsevier, vol. 250(C), pages 25-33.
    6. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    7. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    8. Zhang, Yan & Lu, Hanjing & Fath, Brian D. & Zheng, Hongmei, 2016. "Modelling urban nitrogen metabolic processes based on ecological network analysis: A case of study in Beijing, China," Ecological Modelling, Elsevier, vol. 337(C), pages 29-38.
    9. Mao, Xufeng & Yang, Zhifeng, 2011. "Functional assessment of interconnected aquatic ecosystems in the Baiyangdian Basin—An ecological-network-analysis based approach," Ecological Modelling, Elsevier, vol. 222(23), pages 3811-3820.
    10. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    11. Johnson, Galen A. & Niquil, Nathalie & Asmus, Harald & Bacher, Cédric & Asmus, Ragnhild & Baird, Daniel, 2009. "The effects of aggregation on the performance of the inverse method and indicators of network analysis," Ecological Modelling, Elsevier, vol. 220(23), pages 3448-3464.
    12. Deehr, Rebecca A. & Luczkovich, Joseph J. & Hart, Kevin J. & Clough, Lisa M. & Johnson, Beverly J. & Johnson, Jeffrey C., 2014. "Using stable isotope analysis to validate effective trophic levels from Ecopath models of areas closed and open to shrimp trawling in Core Sound, NC, USA," Ecological Modelling, Elsevier, vol. 282(C), pages 1-17.
    13. Solovjova, N.V., 2019. "Ecological risk modelling in developing resources of ecosystems characterized by varying vulnerability levels," Ecological Modelling, Elsevier, vol. 406(C), pages 60-72.
    14. Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
    15. Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2015. "Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 78-92.
    16. Tang, P.Z. & Liu, J.Z. & Lu, H.W. & Wang, Z. & He, L., 2017. "Information-based Network Environ Analysis for Ecological Risk Assessment of heavy metals in soils," Ecological Modelling, Elsevier, vol. 344(C), pages 17-28.
    17. Pacella, Stephen R. & Lebreton, Benoit & Richard, Pierre & Phillips, Donald & DeWitt, Theodore H. & Niquil, Nathalie, 2013. "Incorporation of diet information derived from Bayesian stable isotope mixing models into mass-balanced marine ecosystem models: A case study from the Marennes-Oléron Estuary, France," Ecological Modelling, Elsevier, vol. 267(C), pages 127-137.
    18. Tuominen, Lindsey K. & Whipple, Stuart J. & Patten, Bernard C. & Karatas, Zekeriya Y. & Kazanci, Caner, 2014. "Contribution of throughflows to the ecological interpretation of integral network utility," Ecological Modelling, Elsevier, vol. 293(C), pages 187-201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milessi, Andrés C. & Danilo, Calliari & Laura, Rodríguez-Graña & Daniel, Conde & Javier, Sellanes & Rodríguez-Gallego, Lorena, 2010. "Trophic mass-balance model of a subtropical coastal lagoon, including a comparison with a stable isotope analysis of the food-web," Ecological Modelling, Elsevier, vol. 221(24), pages 2859-2869.
    2. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    3. Gao, Yan & Liu, Gengyuan & Casazza, Marco & Hao, Yan & Zhang, Yan & Giannetti, Biagio F., 2018. "Economy-pollution nexus model of cities at river basin scale based on multi-agent simulation: A conceptual framework," Ecological Modelling, Elsevier, vol. 379(C), pages 22-38.
    4. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    5. Deehr, Rebecca A. & Luczkovich, Joseph J. & Hart, Kevin J. & Clough, Lisa M. & Johnson, Beverly J. & Johnson, Jeffrey C., 2014. "Using stable isotope analysis to validate effective trophic levels from Ecopath models of areas closed and open to shrimp trawling in Core Sound, NC, USA," Ecological Modelling, Elsevier, vol. 282(C), pages 1-17.
    6. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    7. Zhu, Xueting & Mu, Xianzhong & Hu, Guangwen, 2019. "Ecological network analysis of urban energy metabolic system—A case study of Beijing," Ecological Modelling, Elsevier, vol. 404(C), pages 36-45.
    8. Link, Jason & Col, Laurel & Guida, Vincent & Dow, David & O’Reilly, John & Green, Jack & Overholtz, William & Palka, Debra & Legault, Chris & Vitaliano, Joseph & Griswold, Carolyn & Fogarty, Michael &, 2009. "Response of balanced network models to large-scale perturbation: Implications for evaluating the role of small pelagics in the Gulf of Maine," Ecological Modelling, Elsevier, vol. 220(3), pages 351-369.
    9. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    10. Zhang, Yan & Lu, Hanjing & Fath, Brian D. & Zheng, Hongmei, 2016. "Modelling urban nitrogen metabolic processes based on ecological network analysis: A case of study in Beijing, China," Ecological Modelling, Elsevier, vol. 337(C), pages 29-38.
    11. Du, Jianguo & Cheung, William W.L. & Zheng, Xinqing & Chen, Bin & Liao, Jianji & Hu, Wenjia, 2015. "Comparing trophic structure of a subtropical bay as estimated from mass-balance food web model and stable isotope analysis," Ecological Modelling, Elsevier, vol. 312(C), pages 175-181.
    12. Chuang Tu & Xianzhong Mu & Yufeng Wu & Yifan Gu & Guangwen Hu, 2022. "Heterogenous impacts of components in urban energy metabolism: evidences from gravity model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10089-10117, August.
    13. Borrett, S.R. & Salas, A.K., 2010. "Evidence for resource homogenization in 50 trophic ecosystem networks," Ecological Modelling, Elsevier, vol. 221(13), pages 1710-1716.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:22:p:3113-3122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.