IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v472y2022ics0304380022001855.html
   My bibliography  Save this article

Systematic bibliographic research on eutrophication-based ecological modelling of aquatic ecosystems through the lens of science mapping

Author

Listed:
  • Dash, Siddhant
  • Kalamdhad, Ajay S.

Abstract

The present study provides a scientific investigation of a detailed review of the published works in the domain of eutrophication-based ecological modelling till the year 2020. A total of 399 articles were extracted for final analyses, which were subjected to a three-step hierarchical procedure; Bibliographic examination, scientometric investigation, and qualitative assessment. The bibliographic test filtered 320 samples, based on which the article samples were subjected to several scientometric analyses, such as identifying the most influential and productive journals, researchers, articles, and countries. Keyword analysis revealed the most frequently used keywords in the research domain and amongst scholars around the world. The scientometric studies were followed by a qualitative assessment wherein the current trends in research were discussed. This was followed by identifying the critical gaps in research to provide future direction. Thus, this research offers a more comprehensive and holistic approach towards the critical review of the published literature, thereby providing essential insights to the researchers regarding the existing practices of developing eutrophication-based ecological models and the future prospects lying ahead.

Suggested Citation

  • Dash, Siddhant & Kalamdhad, Ajay S., 2022. "Systematic bibliographic research on eutrophication-based ecological modelling of aquatic ecosystems through the lens of science mapping," Ecological Modelling, Elsevier, vol. 472(C).
  • Handle: RePEc:eee:ecomod:v:472:y:2022:i:c:s0304380022001855
    DOI: 10.1016/j.ecolmodel.2022.110080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022001855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yanhong & Peng, Hong & Yang, Yinqun & Zhang, Wanshun & Wang, Shuangling, 2014. "A cumulative eutrophication risk evaluation method based on a bioaccumulation model," Ecological Modelling, Elsevier, vol. 289(C), pages 77-85.
    2. Langmead, Olivia & McQuatters-Gollop, Abigail & Mee, Laurence D. & Friedrich, Jana & Gilbert, Alison J. & Gomoiu, Marian-Traian & Jackson, Emma L. & Knudsen, Ståle & Minicheva, Galina & Todorova, Vale, 2009. "Recovery or decline of the northwestern Black Sea: A societal choice revealed by socio-ecological modelling," Ecological Modelling, Elsevier, vol. 220(21), pages 2927-2939.
    3. Hu, Weiping, 2016. "A review of the models for Lake Taihu and their application in lake environmental management," Ecological Modelling, Elsevier, vol. 319(C), pages 9-20.
    4. Magnea, Ulrika & Sciascia, Roberta & Paparella, Francesco & Tiberti, Rocco & Provenzale, Antonello, 2013. "A model for high-altitude alpine lake ecosystems and the effect of introduced fish," Ecological Modelling, Elsevier, vol. 251(C), pages 211-220.
    5. Taguchi, Koichi & Nakata, Kisaburo, 2009. "Evaluation of biological water purification functions of inland lakes using an aquatic ecosystem model," Ecological Modelling, Elsevier, vol. 220(18), pages 2255-2271.
    6. He, Guojian & Fang, Hongwei & Bai, Sen & Liu, Xiaobo & Chen, Minghong & Bai, Jing, 2011. "Application of a three-dimensional eutrophication model for the Beijing Guanting Reservoir, China," Ecological Modelling, Elsevier, vol. 222(8), pages 1491-1501.
    7. Jeong, Hanseok & Adamowski, Jan, 2016. "A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale," Agricultural Water Management, Elsevier, vol. 171(C), pages 89-107.
    8. Prokopkin, I.G. & Barkhatov, Y.V. & Khromechek, E.B., 2014. "A one-dimensional model for phytoflagellate distribution in the meromictic lake," Ecological Modelling, Elsevier, vol. 288(C), pages 1-8.
    9. Li-kun, Yang & Sen, Peng & Xin-hua, Zhao & Xia, Li, 2017. "Development of a two-dimensional eutrophication model in an urban lake (China) and the application of uncertainty analysis," Ecological Modelling, Elsevier, vol. 345(C), pages 63-74.
    10. McCullough, Ian M. & Dugan, Hilary A. & Farrell, Kaitlin J. & Morales-Williams, Ana M. & Ouyang, Zutao & Roberts, Derek & Scordo, Facundo & Bartlett, Sarah L. & Burke, Samantha M. & Doubek, Jonathan P, 2018. "Dynamic modeling of organic carbon fates in lake ecosystems," Ecological Modelling, Elsevier, vol. 386(C), pages 71-82.
    11. Weiping, Hu & Jørgensen, Sven Erik & Fabing, Zhang & Yonggen, Chen & Zhixin, Hu & Longyuan, Yang, 2011. "A model on the carbon cycling in Lake Taihu, China," Ecological Modelling, Elsevier, vol. 222(16), pages 2973-2991.
    12. Das, Tanaya & Chakraborti, Saranya & Mukherjee, Joydeep & Sen, Goutam Kumar, 2018. "Mathematical modelling for phytoplankton distribution in Sundarbans Estuarine System, India," Ecological Modelling, Elsevier, vol. 368(C), pages 111-120.
    13. Xu, F. & Yang, Z.F. & Chen, B. & Zhao, Y.W., 2013. "Impact of submerged plants on ecosystem health of the plant-dominated Baiyangdian Lake, China," Ecological Modelling, Elsevier, vol. 252(C), pages 167-175.
    14. Toby Tyrrell, 1999. "The relative influences of nitrogen and phosphorus on oceanic primary production," Nature, Nature, vol. 400(6744), pages 525-531, August.
    15. Mukherjee, B. & Mukherjee, D. & Nivedita, M., 2008. "Modelling carbon and nutrient cycling in a simulated pond system at Ranchi," Ecological Modelling, Elsevier, vol. 213(3), pages 437-448.
    16. Zouiten, Hala & Díaz, César Álvarez & Gómez, Andrés García & Cortezón, José Antonio Revilla & Alba, Javier García, 2013. "An advanced tool for eutrophication modeling in coastal lagoons: Application to the Victoria lagoon in the north of Spain," Ecological Modelling, Elsevier, vol. 265(C), pages 99-113.
    17. Zhang, Weitao & Watson, Sue B. & Rao, Yerubandi R. & Kling, Hedy J., 2013. "A linked hydrodynamic, water quality and algal biomass model for a large, multi-basin lake: A working management tool," Ecological Modelling, Elsevier, vol. 269(C), pages 37-50.
    18. Trolle, Dennis & Skovgaard, Henrik & Jeppesen, Erik, 2008. "The Water Framework Directive: Setting the phosphorus loading target for a deep lake in Denmark using the 1D lake ecosystem model DYRESM–CAEDYM," Ecological Modelling, Elsevier, vol. 219(1), pages 138-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Yongeun & Lee, Minyoung & Hong, Jinsol & Lee, Yun-Sik & Wee, June & Cho, Kijong, 2024. "Development of a fuzzy logic-embedded system dynamics model to simulate complex socio-ecological systems," Ecological Modelling, Elsevier, vol. 493(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dash, Siddhant & Borah, Smitom Swapna & Kalamdhad, Ajay S., 2020. "Study of the limnology of wetlands through a one-dimensional model for assessing the eutrophication levels induced by various pollution sources," Ecological Modelling, Elsevier, vol. 416(C).
    2. Bae, Sunim & Seo, Dongil, 2021. "Changes in algal bloom dynamics in a regulated large river in response to eutrophic status," Ecological Modelling, Elsevier, vol. 454(C).
    3. Islam, Md. Nazrul & Kitazawa, Daisuke & Kokuryo, Naoki & Tabeta, Shigeru & Honma, Takamitsu & Komatsu, Nobuyuki, 2012. "Numerical modeling on transition of dominant algae in Lake Kitaura, Japan," Ecological Modelling, Elsevier, vol. 242(C), pages 146-163.
    4. Bai, Jing & Zhao, Jian & Zhang, Zhenyu & Tian, Ziqiang, 2022. "Assessment and a review of research on surface water quality modeling," Ecological Modelling, Elsevier, vol. 466(C).
    5. Wang, Yanping & Peng, Zhaoliang & Liu, Gang & Zhang, Hui & Zhou, Xiangqian & Hu, Weiping, 2023. "A mathematical model for phosphorus interactions and transport at the sediment-water interface in a large shallow lake," Ecological Modelling, Elsevier, vol. 476(C).
    6. Bae, Soonyim & Seo, Dongil, 2018. "Analysis and modeling of algal blooms in the Nakdong River, Korea," Ecological Modelling, Elsevier, vol. 372(C), pages 53-63.
    7. Ertürk, Ali & Sakurova, Ilona & Zilius, Mindaugas & Zemlys, Petras & Umgiesser, Georg & Kaynaroglu, Burak & Pilkaitytė, Renata & Razinkovas-Baziukas, Artūras, 2023. "Development of a pelagic biogeochemical model with enhanced computational performance by optimizing ecological complexity and spatial resolution," Ecological Modelling, Elsevier, vol. 486(C).
    8. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    9. Missaghi, Shahram & Hondzo, Miki, 2010. "Evaluation and application of a three-dimensional water quality model in a shallow lake with complex morphometry," Ecological Modelling, Elsevier, vol. 221(11), pages 1512-1525.
    10. Kuosmanen, Timo & Laukkanen, Marita, 2009. "(In)Efficient Management of Interacting Environmental Bads," Discussion Papers 54287, MTT Agrifood Research Finland.
    11. Hu, Wen & Li, Chun-hua & Ye, Chun & Wang, Ji & Wei, Wei-wei & Deng, Yong, 2019. "Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    12. Rossella Vito & Alessandro Pagano & Ivan Portoghese & Raffaele Giordano & Michele Vurro & Umberto Fratino, 2019. "Integrated Approach for Supporting Sustainable Water Resources Management of Irrigation Based on the WEFN Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1281-1295, March.
    13. Alexandre Troian & Mário Conill Gomes & Tales Tiecher & Julio Berbel & Carlos Gutiérrez-Martín, 2021. "The Drivers-Pressures-State-Impact-Response Model to Structure Cause−Effect Relationships between Agriculture and Aquatic Ecosystems," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    14. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    15. Catherine L. Kling & Yiannis Panagopoulos & Adriana Valcu-Lisman & Philip W. Gassman & Sergey Rabotyagov & Todd Campbell & Mike White & Jeffrey G. Arnold & Raghavan Srinivasan & Manoj Jha & Jeff Richa, 2014. "Land Use Model Integrating Agriculture and the Environment (LUMINATE): Linkages between Agricultural Land Use, Local Water Quality and Hypoxic Concerns in the Gulf of Mexico Basin," Center for Agricultural and Rural Development (CARD) Publications 14-wp546, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    16. Elofsson, Katarina & Folmer, Henk & Gren, Ing-Marie, 2003. "Management of eutrophicated coastal ecosystems: a synopsis of the literature with emphasis on theory and methodology," Ecological Economics, Elsevier, vol. 47(1), pages 1-11, November.
    17. Qi Wang & Leon Boegman, 2021. "Multi-Year Simulation of Western Lake Erie Hydrodynamics and Biogeochemistry to Evaluate Nutrient Management Scenarios," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    18. Weinberger, Stefan & Vetter, Mark, 2012. "Using the hydrodynamic model DYRESM based on results of a regional climate model to estimate water temperature changes at Lake Ammersee," Ecological Modelling, Elsevier, vol. 244(C), pages 38-48.
    19. Akomeah, Eric & Lindenschmidt, Karl-Erich & Chapra, Steven C., 2019. "Comparison of aquatic ecosystem functioning between eutrophic and hypereutrophic cold-region river-lake systems," Ecological Modelling, Elsevier, vol. 393(C), pages 25-36.
    20. Jing Chen & Yongqiang Zhou & Yunlin Zhang, 2022. "New Insights into Microbial Degradation of Cyanobacterial Organic Matter Using a Fractionation Procedure," IJERPH, MDPI, vol. 19(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:472:y:2022:i:c:s0304380022001855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.