IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i1p112-119.html
   My bibliography  Save this article

Numerical simulation for impacts of hydrodynamic conditions on algae growth in Chongqing Section of Jialing River, China

Author

Listed:
  • Long, Tian-yu
  • Wu, Lei
  • Meng, Guo-hu
  • Guo, Wei-hua

Abstract

Hydrodynamic conditions are important factors for planktonic algae growth, through introducing two parameters which express the optimal velocity and the velocity range for planktonic algae growth, a new velocity factor was put forward for the formula of growth rate. Therefore, the two-dimensional unsteady ecological dynamic model for algae growth was established to analyze the effects of hydrodynamic conditions on algae growth in Chongqing Reach of Jialing River in China. The temporal and spatial distribution of Chlorophyll-a (Chl-a) concentration was simulated numerically for various water levels, under climate conditions in period of high frequency for algae blooms of Three Gorges Reservoir and nutrition status at present in the research reach. The corresponding locations and areas of likely algae blooms were analyzed and forecasted. The results showed that about 0.04ms−1 was the optimal velocity for algae growth, and the occurrence of algae blooms in large scale is almost impossible because of relatively high water flow velocity for Jialing River.

Suggested Citation

  • Long, Tian-yu & Wu, Lei & Meng, Guo-hu & Guo, Wei-hua, 2011. "Numerical simulation for impacts of hydrodynamic conditions on algae growth in Chongqing Section of Jialing River, China," Ecological Modelling, Elsevier, vol. 222(1), pages 112-119.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:1:p:112-119
    DOI: 10.1016/j.ecolmodel.2010.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010004990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hongyan & Culver, David A. & Boegman, Leon, 2008. "A two-dimensional ecological model of Lake Erie: Application to estimate dreissenid impacts on large lake plankton populations," Ecological Modelling, Elsevier, vol. 214(2), pages 219-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Islam, Md. Nazrul & Kitazawa, Daisuke & Kokuryo, Naoki & Tabeta, Shigeru & Honma, Takamitsu & Komatsu, Nobuyuki, 2012. "Numerical modeling on transition of dominant algae in Lake Kitaura, Japan," Ecological Modelling, Elsevier, vol. 242(C), pages 146-163.
    2. Zhao, Xiaodong & Zhang, Hongjian & Tao, Xiaolei, 2013. "Predicting the short-time-scale variability of chlorophyll a in the Elbe River using a Lagrangian-based multi-criterion analog model," Ecological Modelling, Elsevier, vol. 250(C), pages 279-286.
    3. Zhiyong Liu & Chenfeng Liu & Yuyong Hou & Shulin Chen & Dongguang Xiao & Juankun Zhang & Fangjian Chen, 2013. "Isolation and Characterization of a Marine Microalga for Biofuel Production with Astaxanthin as a Co-Product," Energies, MDPI, vol. 6(6), pages 1-14, May.
    4. Xu, Ben & Li, Peiwen & Waller, Peter, 2014. "Study of the flow mixing in a novel ARID raceway for algae production," Renewable Energy, Elsevier, vol. 62(C), pages 249-257.
    5. Yi Tan & Jia Li & Linglei Zhang & Min Chen & Yaowen Zhang & Ruidong An, 2019. "Mechanism Underlying Flow Velocity and Its Corresponding Influence on the Growth of Euglena gracilis , a Dominant Bloom Species in Reservoirs," IJERPH, MDPI, vol. 16(23), pages 1-15, November.
    6. Tianfu He & Yun Deng & Youcai Tuo & Yanjing Yang & Naisheng Liang, 2020. "Impact of the Dam Construction on the Downstream Thermal Conditions of the Yangtze River," IJERPH, MDPI, vol. 17(8), pages 1-14, April.
    7. Yao, Jianyu & Xiao, Peng & Zhang, Yunhuai & Zhan, Min & Cheng, Jiangwei, 2011. "A mathematical model of algal blooms based on the characteristics of complex networks theory," Ecological Modelling, Elsevier, vol. 222(20), pages 3727-3733.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Long & Xia, Meng & Ludsin, Stuart A. & Rutherford, Edward S. & Mason, Doran M. & Marin Jarrin, Jose & Pangle, Kevin L., 2015. "Biophysical modeling assessment of the drivers for plankton dynamics in dreissenid-colonized western Lake Erie," Ecological Modelling, Elsevier, vol. 308(C), pages 18-33.
    2. Shen, Chunqi & Liao, Qian & Bootsma, Harvey A., 2020. "Modelling the influence of invasive mussels on phosphorus cycling in Lake Michigan," Ecological Modelling, Elsevier, vol. 416(C).
    3. Zheng, Lianyuan & Weisberg, Robert H., 2010. "Rookery Bay and Naples Bay circulation simulations: Applications to tides and fresh water inflow regulation," Ecological Modelling, Elsevier, vol. 221(7), pages 986-996.
    4. Jørgensen, Sven Erik, 2010. "A review of recent developments in lake modelling," Ecological Modelling, Elsevier, vol. 221(4), pages 689-692.
    5. Theng, Vouchlay & Sith, Ratino & Uk, Sovannara & Yoshimura, Chihiro, 2023. "Phytoplankton productivity in a tropical lake-floodplain system revealed by a process-based primary production model," Ecological Modelling, Elsevier, vol. 479(C).
    6. Shimoda, Yuko & Arhonditsis, George B., 2016. "Phytoplankton functional type modelling: Running before we can walk? A critical evaluation of the current state of knowledge," Ecological Modelling, Elsevier, vol. 320(C), pages 29-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:1:p:112-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.