IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v467y2022ics0304380022000540.html
   My bibliography  Save this article

Harmful algal bloom dynamics in a tidal river influenced by hydraulic control structures

Author

Listed:
  • Kim, Jaeyoung
  • Seo, Dongil
  • Jones, John R.

Abstract

The Singok weir, an instream structure in the Han River estuary constructed in the 1980s for multiple purposes, has interfered with natural river flow. Removal of this structure has been considered to restore water quality, including reducing algal blooms. Spatiotemporal changes in water quality, hydrodynamics, hydrology, and algal growth resulting from the removal of the Singok weir were analyzed using 3-D hydrodynamic, water quality, and sediment transport modules in the Environmental Fluid Dynamics Code model for a five-year period (2013 ∼ 2017) with field data. Weir removal decreased water depth and thus water volume by >10%, which increased average nutrient concentrations given fixed pollutant inputs. With the weir removal, average cyanobacteria decreased in the upper region during summer but increased in the lower region. However, differences in cyanobacteria biomass were less than 1.0 mg Chl-a/m3 except during 2015, the driest summer, where peak cyanobacteria increased by 20% (11.8 mg/m3). Factors limiting summer algal growth tended to increase modestly during normal flow (<3.1%), which suggests the weir removal can potentially enhance algal growth. The role of hydrology stood out as the major factor determining algal growth, with greater relative importance than nutrients, light, and temperature. Simulations showed minimum discharge of 150 m3/s from the Paldang dam was required to avoid excessive cyanobacteria growth downstream. Hydraulic residence time during summer determined the growth potential of algae; low discharge provided sufficient residence time for algae to proliferate, and conversely. This result also emphasizes the importance of seasonal and hydrodynamic assessments when analyzing cyanobacteria in response to external changes, which can be masked in annual average values by numerous factors.

Suggested Citation

  • Kim, Jaeyoung & Seo, Dongil & Jones, John R., 2022. "Harmful algal bloom dynamics in a tidal river influenced by hydraulic control structures," Ecological Modelling, Elsevier, vol. 467(C).
  • Handle: RePEc:eee:ecomod:v:467:y:2022:i:c:s0304380022000540
    DOI: 10.1016/j.ecolmodel.2022.109931
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022000540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.109931?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Guozheng & Xu, Zongxue, 2011. "Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake," Ecological Modelling, Elsevier, vol. 222(6), pages 1245-1252.
    2. Bae, Sunim & Seo, Dongil, 2021. "Changes in algal bloom dynamics in a regulated large river in response to eutrophic status," Ecological Modelling, Elsevier, vol. 454(C).
    3. Bae, Soonyim & Seo, Dongil, 2018. "Analysis and modeling of algal blooms in the Nakdong River, Korea," Ecological Modelling, Elsevier, vol. 372(C), pages 53-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenhuan Tian & Jinghao Shi & Yuanyuan Liu & Wei Wang & Chunhua Liu & Fangfang Li & Yanqin Shao, 2023. "Response of Sea Water Exchange Processes to Monsoons in Jiaozhou Bay, China," Sustainability, MDPI, vol. 15(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bae, Sunim & Seo, Dongil, 2021. "Changes in algal bloom dynamics in a regulated large river in response to eutrophic status," Ecological Modelling, Elsevier, vol. 454(C).
    2. Akomeah, Eric & Lindenschmidt, Karl-Erich & Chapra, Steven C., 2019. "Comparison of aquatic ecosystem functioning between eutrophic and hypereutrophic cold-region river-lake systems," Ecological Modelling, Elsevier, vol. 393(C), pages 25-36.
    3. Islam, Md. Nazrul & Kitazawa, Daisuke & Kokuryo, Naoki & Tabeta, Shigeru & Honma, Takamitsu & Komatsu, Nobuyuki, 2012. "Numerical modeling on transition of dominant algae in Lake Kitaura, Japan," Ecological Modelling, Elsevier, vol. 242(C), pages 146-163.
    4. Md Jahangir Alam & Dushmanta Dutta, 2016. "A Sub-Catchment Based Approach for Modelling Nutrient Dynamics and Transport at a River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5455-5478, November.
    5. Lee, Ingyu & Hwang, Hyundong & Lee, Jungwoo & Yu, Nayoung & Yun, Jinhuck & Kim, Hyunook, 2017. "Modeling approach to evaluation of environmental impacts on river water quality: A case study with Galing River, Kuantan, Pahang, Malaysia," Ecological Modelling, Elsevier, vol. 353(C), pages 167-173.
    6. Liu, Haidong & Zheng, Zhongquan C. & Young, Bryan & Harris, Ted D., 2019. "Three-dimensional numerical modeling of the cyanobacterium Microcystis transport and its population dynamics in a large freshwater reservoir," Ecological Modelling, Elsevier, vol. 398(C), pages 20-34.
    7. Shen, Jian & Qin, Qubin & Wang, Ya & Sisson, Mac, 2019. "A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading," Ecological Modelling, Elsevier, vol. 398(C), pages 44-54.
    8. Hanane Rhomad & Karima Khalil & Khalid Elkalay, 2023. "Water Quality Modeling in Atlantic Region: Review, Science Mapping and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 451-499, January.
    9. Muhammad Mazhar Iqbal & Muhammad Shoaib & Hafiz Umar Farid & Jung Lyul Lee, 2018. "Assessment of Water Quality Profile Using Numerical Modeling Approach in Major Climate Classes of Asia," IJERPH, MDPI, vol. 15(10), pages 1-26, October.
    10. Zhao, Xiaodong & Zhang, Hongjian & Tao, Xiaolei, 2013. "Predicting the short-time-scale variability of chlorophyll a in the Elbe River using a Lagrangian-based multi-criterion analog model," Ecological Modelling, Elsevier, vol. 250(C), pages 279-286.
    11. Md. Islam & Daisuke Kitazawa & Thomas Hamill & Ho-Dong Park, 2013. "Modeling mitigation strategies for toxic cyanobacteria blooms in shallow and eutrophic Lake Kasumigaura, Japan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(4), pages 449-470, April.
    12. Chen, Bokun & Yang, Siyu & Cao, Qi & Qian, Yu, 2020. "Life cycle economic assessment of coal chemical wastewater treatment facing the ‘Zero liquid discharge’ industrial water policies in China: Discharge or reuse?," Energy Policy, Elsevier, vol. 137(C).
    13. Bokjin Lee & Heejun Kang & Hye-cheol Oh & Jaehwan Ahn & Saerom Park & Sang-Leen Yun & Seogku Kim, 2022. "Long-Term Examination of Water Chemistry Changes Following Treatment of Cyanobacterial Bloom with Coagulants and Minerals," IJERPH, MDPI, vol. 19(20), pages 1-13, October.
    14. Jiang, Long & Li, Yiping & Zhao, Xu & Tillotson, Martin R. & Wang, Wencai & Zhang, Shuangshuang & Sarpong, Linda & Asmaa, Qhtan & Pan, Baozhu, 2018. "Parameter uncertainty and sensitivity analysis of water quality model in Lake Taihu, China," Ecological Modelling, Elsevier, vol. 375(C), pages 1-12.
    15. Luo, Xi & Li, Xuyong, 2018. "Using the EFDC model to evaluate the risks of eutrophication in an urban constructed pond from different water supply strategies," Ecological Modelling, Elsevier, vol. 372(C), pages 1-11.
    16. Lee, Donghyun & Kim, Mingyu & Lee, Beomhui & Chae, Sangwon & Kwon, Sungjun & Kang, Sungwon, 2022. "Integrated explainable deep learning prediction of harmful algal blooms," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    17. Li-kun, Yang & Sen, Peng & Xin-hua, Zhao & Xia, Li, 2017. "Development of a two-dimensional eutrophication model in an urban lake (China) and the application of uncertainty analysis," Ecological Modelling, Elsevier, vol. 345(C), pages 63-74.
    18. Gula Tang & Yunqiang Zhu & Guozheng Wu & Jing Li & Zhao-Liang Li & Jiulin Sun, 2016. "Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China," IJERPH, MDPI, vol. 13(4), pages 1-15, April.
    19. Bae, Soonyim & Seo, Dongil, 2018. "Analysis and modeling of algal blooms in the Nakdong River, Korea," Ecological Modelling, Elsevier, vol. 372(C), pages 53-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:467:y:2022:i:c:s0304380022000540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.