IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i8p1387-1393.html
   My bibliography  Save this article

Disentangling the effects of heterogeneity, stochastic dynamics and sampling in a community of aquatic insects

Author

Listed:
  • Engen, Steinar
  • Aagaard, Kaare
  • Bongard, Terje

Abstract

A dynamic and heterogeneous species abundance model generating the lognormal species abundance distribution is fitted to time series of species data from an assemblage of stoneflies and mayflies (Plecoptera and Ephemeroptera) of an aquatic insect community collected over a period of 15 years. In each year except one, we analyze 5 parallel samples taken at the same time of the season giving information about the over-dispersion in the sampling relative to the Poisson distribution. Results are derived from a correlation analysis, where the correlation in the bivariate normal distribution of log abundance is used as measurement of similarity between communities. The analysis enables decomposition of the variance of the lognormal species abundance distribution into three components due to heterogeneity among species, stochastic dynamics driven by environmental noise, and over-dispersion in sampling, accounting for 62.9, 30.6 and 6.5% of the total variance, respectively. Corrected for sampling the heterogeneity and stochastic components accordingly account for 67.3 and 32.7% of the among species variance in log abundance. By using this method, it is possible to disentangle the effect of heterogeneity and stochastic dynamics by quantifying these components and correctly remove sampling effects on the observed species abundance distribution.

Suggested Citation

  • Engen, Steinar & Aagaard, Kaare & Bongard, Terje, 2011. "Disentangling the effects of heterogeneity, stochastic dynamics and sampling in a community of aquatic insects," Ecological Modelling, Elsevier, vol. 222(8), pages 1387-1393.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:8:p:1387-1393
    DOI: 10.1016/j.ecolmodel.2011.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011000305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beeravolu, Champak R. & Couteron, Pierre & Pélissier, Raphaël & Munoz, François, 2009. "Studying ecological communities from a neutral standpoint: A review of models’ structure and parameter estimation," Ecological Modelling, Elsevier, vol. 220(20), pages 2603-2610.
    2. Colleen K. Kelly & Michael G. Bowler, 2002. "Coexistence and relative abundance in forest trees," Nature, Nature, vol. 417(6887), pages 437-440, May.
    3. Brian J. McGill, 2003. "A test of the unified neutral theory of biodiversity," Nature, Nature, vol. 422(6934), pages 881-885, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Solbu, Erik Blystad & Engen, Steinar & Diserud, Ola HÃ¥vard, 2016. "Characteristics of temporal changes in communities where dynamics differ between species," Theoretical Population Biology, Elsevier, vol. 111(C), pages 65-74.
    2. Solbu, Erik B. & Diserud, Ola H. & Kålås, John A. & Engen, Steinar, 2018. "Heterogeneity among species and community dynamics—Norwegian bird communities as a case study," Ecological Modelling, Elsevier, vol. 388(C), pages 13-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathias, Andrea & Chesson, Peter, 2013. "Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities," Theoretical Population Biology, Elsevier, vol. 84(C), pages 56-71.
    2. Köhler, Peter & Huth, Andreas, 2007. "Impacts of recruitment limitation and canopy disturbance on tropical tree species richness," Ecological Modelling, Elsevier, vol. 203(3), pages 511-517.
    3. White, Denis & Rashleigh, Brenda, 2012. "Effects of stream topology on ecological community results from neutral models," Ecological Modelling, Elsevier, vol. 231(C), pages 20-24.
    4. Han, Zhi-Quan & Liu, Tong & Zhao, Wen-Xuan & Wang, Han-Yue & Sun, Qin-Ming & Sun, Hui & Li, Bai-Lian, 2022. "A new species abundance distribution model including the hydrological niche differentiation in water-limited ecosystems," Ecological Modelling, Elsevier, vol. 470(C).
    5. Yosef E Maruvka & Nadav M Shnerb, 2009. "Polymorphism Data Can Reveal the Origin of Species Abundance Statistics," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-6, April.
    6. Zhang, Yu J. & Harte, John, 2015. "Population dynamics and competitive outcome derive from resource allocation statistics: The governing influence of the distinguishability of individuals," Theoretical Population Biology, Elsevier, vol. 105(C), pages 53-63.
    7. Kolasa, Jurek & Allen, Craig R. & Sendzimir, Jan & Stow, Craig A., 2012. "Predictions and retrodictions of the hierarchical representation of habitat in heterogeneous environments," Ecological Modelling, Elsevier, vol. 245(C), pages 199-207.
    8. Yang, Yinghui & Bao, Liping, 2022. "Scale-dependent changes in species richness caused by invader competition," Ecological Modelling, Elsevier, vol. 469(C).
    9. Tancredi Caruso & Jeff R Powell & Matthias C Rillig, 2012. "Compositional Divergence and Convergence in Local Communities and Spatially Structured Landscapes," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.
    10. Urban, Natasha A. & Matter, Stephen F., 2018. "Metapopulation mirages: Problems parsing process from pattern," Ecological Modelling, Elsevier, vol. 375(C), pages 20-29.
    11. Beeravolu, Champak R. & Couteron, Pierre & Pélissier, Raphaël & Munoz, François, 2009. "Studying ecological communities from a neutral standpoint: A review of models’ structure and parameter estimation," Ecological Modelling, Elsevier, vol. 220(20), pages 2603-2610.
    12. Yuan, Chi & Chesson, Peter, 2015. "The relative importance of relative nonlinearity and the storage effect in the lottery model," Theoretical Population Biology, Elsevier, vol. 105(C), pages 39-52.
    13. Bhattacharyya, Joydeb & Roelke, Daniel L. & Muhl, Rika M.W. & Withrow, Frances G., 2018. "Exploitative competition of invaders differentially influences the diversity of neutral, lumpy and intransitive phytoplankton assemblages in spatially heterogeneous environments," Ecological Modelling, Elsevier, vol. 370(C), pages 59-66.
    14. Edgardo Brigatti & Estevan Augusto Amazonas Mendes, 2021. "Testing macroecological theories in cryptocurrency market: neutral models can not describe diversity patterns and their variation," Papers 2111.02067, arXiv.org, revised Jul 2022.
    15. Withrow, Frances G. & Roelke, Daniel L. & Muhl, Rika M.W. & Bhattacharyya, Joydeb, 2018. "Water column processes differentially influence richness and diversity of neutral, lumpy and intransitive phytoplankton assemblages," Ecological Modelling, Elsevier, vol. 370(C), pages 22-32.
    16. Holt, Galen & Chesson, Peter, 2014. "Variation in moisture duration as a driver of coexistence by the storage effect in desert annual plants," Theoretical Population Biology, Elsevier, vol. 92(C), pages 36-50.
    17. Gatti, Roberto Cazzolla & Hordijk, Wim & Kauffman, Stuart, 2017. "Biodiversity is autocatalytic," Ecological Modelling, Elsevier, vol. 346(C), pages 70-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:8:p:1387-1393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.