IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v417y2002i6887d10.1038_417437a.html
   My bibliography  Save this article

Coexistence and relative abundance in forest trees

Author

Listed:
  • Colleen K. Kelly

    (University of Oxford
    University of Southampton)

  • Michael G. Bowler

    (University of Oxford)

Abstract

Contemporary acceleration of biodiversity loss makes increasingly urgent the need to understand the controls of species coexistence1,2. Tree diversity in particular plays a pivotal role in determining terrestrial biodiversity, through maintaining diversity of its dependent species3,4 and with them, their predators and parasites. Most theories of coexistence based on the principle of limiting similarity suggest that coexistence of competing species is inherently unstable; coexistence of competitors must be maintained by external forces such as disturbance5,6, immigration7 or ‘patchiness’ of resources in space and time8,9. In contrast, storage theory postulates stable coexistence of competing species through temporal alternation of conditions favouring recruitment of one species over the other10,11. Here we use storage theory to develop explicit predictions for relative differences between competitors that allow us to discriminate between coexistence models. Data on tree species from a primary forest on the Mexican Pacific coast support a general dynamic of storage processes determining coexistence of similar tree species in this community, and allow us to reject all other theories of coexistence.

Suggested Citation

  • Colleen K. Kelly & Michael G. Bowler, 2002. "Coexistence and relative abundance in forest trees," Nature, Nature, vol. 417(6887), pages 437-440, May.
  • Handle: RePEc:nat:nature:v:417:y:2002:i:6887:d:10.1038_417437a
    DOI: 10.1038/417437a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/417437a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/417437a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathias, Andrea & Chesson, Peter, 2013. "Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities," Theoretical Population Biology, Elsevier, vol. 84(C), pages 56-71.
    2. Zhang, Yu J. & Harte, John, 2015. "Population dynamics and competitive outcome derive from resource allocation statistics: The governing influence of the distinguishability of individuals," Theoretical Population Biology, Elsevier, vol. 105(C), pages 53-63.
    3. Yuan, Chi & Chesson, Peter, 2015. "The relative importance of relative nonlinearity and the storage effect in the lottery model," Theoretical Population Biology, Elsevier, vol. 105(C), pages 39-52.
    4. Engen, Steinar & Aagaard, Kaare & Bongard, Terje, 2011. "Disentangling the effects of heterogeneity, stochastic dynamics and sampling in a community of aquatic insects," Ecological Modelling, Elsevier, vol. 222(8), pages 1387-1393.
    5. Holt, Galen & Chesson, Peter, 2014. "Variation in moisture duration as a driver of coexistence by the storage effect in desert annual plants," Theoretical Population Biology, Elsevier, vol. 92(C), pages 36-50.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:417:y:2002:i:6887:d:10.1038_417437a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.