IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i15p2595-2605.html
   My bibliography  Save this article

Estimating the potential impact of vegetation on the water cycle requires accurate soil water parameter estimation

Author

Listed:
  • Wolf, Annett

Abstract

It is well known that vegetation dynamics at the catchment scale depends on the prevailing weather and soil moisture conditions. Soil moisture, however, is not equally distributed in space due to differences in topography, weather patterns, soil properties and the type and amount of vegetation cover. To elucidate the complex interaction between vegetation and soil moisture, the dynamic vegetation model LPJ-GUESS (Smith et al., 2001), which provides estimations of vegetation dynamics, but does not consider lateral water fluxes was coupled with the hydrological TOPMODEL (cf. Beven, 2001) in order to be able to evaluate the importance of these lateral fluxes. The new model LG-TM was calibrated and validated in two climatically different mountain catchments. The estimations of runoff were good, when monthly and weekly time scales were considered, although the low flow periods at winter time were somewhat underestimated. The uncertainty in the climate induced change vegetation carbon storage caused by the uncertainty in soil parameters was up to 3–5kgCm−2 (depending on elevation and catchment), compared to the total change in vegetation carbon storage of 5–9kgCm−2. Therefore accurate estimates of the parameters influencing the water holding capacity of the soil, for example depth and porosity, are necessary when estimating future changes in vegetation carbon storage. Similarly, changes in plant transpiration due to climatic changes could be almost double as high (88mmm−2) in the not calibrated model compared to the new model version (ca 50mmm−2 transpiration change). The uncertainties in these soil properties were found to be more important than the lateral water exchange between grid cells, even in steep topography at least for the temporal and spatial resolution used here.

Suggested Citation

  • Wolf, Annett, 2011. "Estimating the potential impact of vegetation on the water cycle requires accurate soil water parameter estimation," Ecological Modelling, Elsevier, vol. 222(15), pages 2595-2605.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:15:p:2595-2605
    DOI: 10.1016/j.ecolmodel.2011.04.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001100264X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.04.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard A. Betts & Olivier Boucher & Matthew Collins & Peter M. Cox & Peter D. Falloon & Nicola Gedney & Deborah L. Hemming & Chris Huntingford & Chris D. Jones & David M. H. Sexton & Mark J. Webb, 2007. "Projected increase in continental runoff due to plant responses to increasing carbon dioxide," Nature, Nature, vol. 448(7157), pages 1037-1041, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiz-Pérez, G. & González-Sanchis, M. & Del Campo, A.D. & Francés, F., 2016. "Can a parsimonious model implemented with satellite data be used for modelling the vegetation dynamics and water cycle in water-controlled environments?," Ecological Modelling, Elsevier, vol. 324(C), pages 45-53.
    2. Manusch, Corina & Bugmann, Harald & Heiri, Caroline & Wolf, Annett, 2012. "Tree mortality in dynamic vegetation models – A key feature for accurately simulating forest properties," Ecological Modelling, Elsevier, vol. 243(C), pages 101-111.
    3. Manusch, Corina & Bugmann, Harald & Wolf, Annett, 2014. "Sensitivity of simulated productivity to soil characteristics and plant water uptake along drought gradients in the Swiss Alps," Ecological Modelling, Elsevier, vol. 282(C), pages 25-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven Wade & Jemima Rance & Nick Reynard, 2013. "The UK Climate Change Risk Assessment 2012: Assessing the Impacts on Water Resources to Inform Policy Makers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(4), pages 1085-1109, March.
    2. Xiuliang Yuan & Jie Bai, 2018. "Future Projected Changes in Local Evapotranspiration Coupled with Temperature and Precipitation Variation," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    3. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    5. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    6. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    7. Florent Noulèkoun & Asia Khamzina & Jesse B. Naab & Ni’matul Khasanah & Meine Van Noordwijk & John P. A. Lamers, 2018. "Climate Change Sensitivity of Multi-Species Afforestation in Semi-Arid Benin," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    8. Calzadilla, Alvaro & Zhu, Tingju & Rehdanz, Katrin & Tol, Richard S.J. & Ringler, Claudia, 2013. "Economywide impacts of climate change on agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 93(C), pages 150-165.
    9. Jahan Zeb Khan & Muhammad Zaheer, 2018. "Impacts Of Environmental Changeability And Human Activities On Hydrological Processes And Response ," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(1), pages 13-17, June.
    10. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    11. Yiping Wu & Shuguang Liu & Omar Abdul-Aziz, 2012. "Hydrological effects of the increased CO 2 and climate change in the Upper Mississippi River Basin using a modified SWAT," Climatic Change, Springer, vol. 110(3), pages 977-1003, February.
    12. Benjamin Kipkemboi Kogo & Lalit Kumar & Richard Koech, 2021. "Climate change and variability in Kenya: a review of impacts on agriculture and food security," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 23-43, January.
    13. Katherine Dagon & Daniel P. Schrag, 2019. "Quantifying the effects of solar geoengineering on vegetation," Climatic Change, Springer, vol. 153(1), pages 235-251, March.
    14. Haoshan Wei & Yongqiang Zhang & Qi Huang & Francis H. S. Chiew & Jinkai Luan & Jun Xia & Changming Liu, 2024. "Direct vegetation response to recent CO2 rise shows limited effect on global streamflow," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Cho, Jaeil & Oki, Taikan & Yeh, Pat J.-F. & Kanae, Shinjiro & Kim, Wonsik, 2010. "The effect of estimated PAR uncertainties on the physiological processes of biosphere models," Ecological Modelling, Elsevier, vol. 221(12), pages 1575-1579.
    16. Boulanger, Pierre & Jomini, Patrick & Zhang, Xiao-guang & Costa, Catherine & Osborne, Michelle, 2010. "The Common Agricultural Policy and the French, European and World Economies," Conference papers 332019, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Jing Gao & Min Liu & Xiaoping Wang, 2024. "Unveiling the Impact of Urbanization on Net Primary Productivity: Insights from the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 13(4), pages 1-18, April.
    18. Hao Xu & Xu Lian & Ingrid J. Slette & Hui Yang & Yuan Zhang & Anping Chen & Shilong Piao, 2022. "Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. John Riverson & Robert Coats & Mariza Costa-Cabral & Michael Dettinger & John Reuter & Goloka Sahoo & Geoffrey Schladow, 2013. "Modeling the transport of nutrients and sediment loads into Lake Tahoe under projected climatic changes," Climatic Change, Springer, vol. 116(1), pages 35-50, January.
    20. Solange Filoso & Maíra Ometto Bezerra & Katherine C B Weiss & Margaret A Palmer, 2017. "Impacts of forest restoration on water yield: A systematic review," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:15:p:2595-2605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.