IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i12p1575-1579.html
   My bibliography  Save this article

The effect of estimated PAR uncertainties on the physiological processes of biosphere models

Author

Listed:
  • Cho, Jaeil
  • Oki, Taikan
  • Yeh, Pat J.-F.
  • Kanae, Shinjiro
  • Kim, Wonsik

Abstract

Photosynthetically active radiation (PAR) energy reaching on the vegetated surface is a key determinant of plant physiological processes. Most of biosphere or crop models use the ratio of PAR to incoming solar radiation (Rs), PAR/Rs, to convert Rs into PAR in order to reduce weather data-input requirements. Several existing models simply specify a constant ratio, PAR/Rs=0.5. However, some field experiments have reported that the ratio PAR/Rs may not be constant. Previous empirical equations of PAR/Rs were derived based on the data of monthly or daily timescales collected from only a few measurement sites, hence they may not be appropriate to be used in current global biosphere models usually with hourly simulation time steps. Here, we represent the exponential correlation between PAR/Rs and sky clearness index (0–1) using hourly data from 54 Ameriflux measurement sites. It is found that PAR/Rs increases up to 0.6 in cloudy conditions when the clearness index (CI) is below ∼0.2, whereas it is nearly constant at ∼0.42 when CI is above 0.2. When the identified empirical equation is used in the model simulation, it results in −4 to 2% difference in the stomatal conductance compared to that using the constant ratio PAR/Rs=0.5.

Suggested Citation

  • Cho, Jaeil & Oki, Taikan & Yeh, Pat J.-F. & Kanae, Shinjiro & Kim, Wonsik, 2010. "The effect of estimated PAR uncertainties on the physiological processes of biosphere models," Ecological Modelling, Elsevier, vol. 221(12), pages 1575-1579.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:12:p:1575-1579
    DOI: 10.1016/j.ecolmodel.2010.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010001432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lizaso, J. I. & Batchelor, W. D. & Westgate, M. E. & Echarte, L., 2003. "Enhancing the ability of CERES-Maize to compute light capture," Agricultural Systems, Elsevier, vol. 76(1), pages 293-311, April.
    2. Richard A. Betts & Olivier Boucher & Matthew Collins & Peter M. Cox & Peter D. Falloon & Nicola Gedney & Deborah L. Hemming & Chris Huntingford & Chris D. Jones & David M. H. Sexton & Mark J. Webb, 2007. "Projected increase in continental runoff due to plant responses to increasing carbon dioxide," Nature, Nature, vol. 448(7157), pages 1037-1041, August.
    3. N. Gedney & P. M. Cox & R. A. Betts & O. Boucher & C. Huntingford & P. A. Stott, 2006. "Detection of a direct carbon dioxide effect in continental river runoff records," Nature, Nature, vol. 439(7078), pages 835-838, February.
    4. Mingkui Cao & F. Ian Woodward, 1998. "Dynamic responses of terrestrial ecosystem carbon cycling to global climate change," Nature, Nature, vol. 393(6682), pages 249-252, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spandagos, Constantine & Ng, Tze Ling, 2018. "Fuzzy model of residential energy decision-making considering behavioral economic concepts," Applied Energy, Elsevier, vol. 213(C), pages 611-625.
    2. Spandagos, Constantinos & Ng, Tze Ling, 2017. "Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities," Applied Energy, Elsevier, vol. 189(C), pages 352-368.
    3. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Hu, Bo & Gong, Wei, 2016. "Modeling and comparison of hourly photosynthetically active radiation in different ecosystems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 436-453.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    2. Calzadilla, Alvaro & Zhu, Tingju & Rehdanz, Katrin & Tol, Richard S.J. & Ringler, Claudia, 2013. "Economywide impacts of climate change on agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 93(C), pages 150-165.
    3. Yiping Wu & Shuguang Liu & Omar Abdul-Aziz, 2012. "Hydrological effects of the increased CO 2 and climate change in the Upper Mississippi River Basin using a modified SWAT," Climatic Change, Springer, vol. 110(3), pages 977-1003, February.
    4. Haoshan Wei & Yongqiang Zhang & Qi Huang & Francis H. S. Chiew & Jinkai Luan & Jun Xia & Changming Liu, 2024. "Direct vegetation response to recent CO2 rise shows limited effect on global streamflow," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Boulanger, Pierre & Jomini, Patrick & Zhang, Xiao-guang & Costa, Catherine & Osborne, Michelle, 2010. "The Common Agricultural Policy and the French, European and World Economies," Conference papers 332019, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Walaa Elnashar & Ahmed Elyamany, 2023. "Managing Risks of Climate Change on Irrigation Water in Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2429-2446, May.
    7. Steven Wade & Jemima Rance & Nick Reynard, 2013. "The UK Climate Change Risk Assessment 2012: Assessing the Impacts on Water Resources to Inform Policy Makers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(4), pages 1085-1109, March.
    8. Xiuliang Yuan & Jie Bai, 2018. "Future Projected Changes in Local Evapotranspiration Coupled with Temperature and Precipitation Variation," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    9. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    10. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    11. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    12. John Reilly & David Schimmelpfennig, 2000. "Irreversibility, Uncertainty, and Learning: Portraits of Adaptation to Long-Term Climate Change," Climatic Change, Springer, vol. 45(1), pages 253-278, April.
    13. Klaus Keller & Kelvin Tan & Francois M.M. Morel & David F. Bradford, 1999. "Preserving the Ocean Circulation: Implications for Climate Policy," CESifo Working Paper Series 199, CESifo.
    14. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    15. M. Jonas & S. Nilsson & A. Shvidenko & V. Stolbovoi & M. Gluck & M. Obersteiner & A. Oeskog, 1999. "Full Carbon Accounting and the Kyoto Protocol: A Systems- Analytical View," Working Papers ir99025, International Institute for Applied Systems Analysis.
    16. Nguyen Van Hiep & Nguyen Thi Thanh Thao & Luong Van Viet & Huynh Cong Luc & Le Huy Ba, 2023. "Affecting of Nature and Human Activities on the Trend of Vegetation Health Indices in Dak Nong Province, Vietnam," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    17. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    18. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    19. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Florent Noulèkoun & Asia Khamzina & Jesse B. Naab & Ni’matul Khasanah & Meine Van Noordwijk & John P. A. Lamers, 2018. "Climate Change Sensitivity of Multi-Species Afforestation in Semi-Arid Benin," Sustainability, MDPI, vol. 10(6), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:12:p:1575-1579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.