IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v282y2014icp25-34.html
   My bibliography  Save this article

Sensitivity of simulated productivity to soil characteristics and plant water uptake along drought gradients in the Swiss Alps

Author

Listed:
  • Manusch, Corina
  • Bugmann, Harald
  • Wolf, Annett

Abstract

Future climate scenarios indicate a change in precipitation patterns, i.e. in frequency and intensity, and thus a change of water availability for plants. The consequences for ecosystems can be evaluated using dynamic vegetation models (DVMs), but the description of soil properties and assumptions about root distribution and functionality are rather simplistic in many DVMs. We use the LPJ-GUESS model to evaluate (i) the usage of high-quality data sources for describing soil properties and (ii) the assumptions regarding roots. Specifically, we compare simulated carbon uptake when applying the frequently used FAO global soil map vs. soil measurements from 98 sites in the driest regions of Switzerland. The multi-layer soil data were used either as observed (non-aggregated) or aggregated into two layers. At sites with low water holding capacities (whc<100mm) and a low precipitation sum that does not compensate for small whc, the FAO data led to a higher annual net primary productivity (ANPP) than when using observed soil data. In contrast under wetter conditions, the description of soil data did not make much difference. A comparison of different rooting strategies revealed a higher importance of vertical root distribution per soil layer than variable rooting depths due to the overriding effect of the hydrological assumptions in the model. We conclude that it is pivotal to use high-quality soil data and possibly to refine the hydrological assumptions in DVMs when attempting to study drought impacts on ecosystems.

Suggested Citation

  • Manusch, Corina & Bugmann, Harald & Wolf, Annett, 2014. "Sensitivity of simulated productivity to soil characteristics and plant water uptake along drought gradients in the Swiss Alps," Ecological Modelling, Elsevier, vol. 282(C), pages 25-34.
  • Handle: RePEc:eee:ecomod:v:282:y:2014:i:c:p:25-34
    DOI: 10.1016/j.ecolmodel.2014.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014001306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manusch, Corina & Bugmann, Harald & Heiri, Caroline & Wolf, Annett, 2012. "Tree mortality in dynamic vegetation models – A key feature for accurately simulating forest properties," Ecological Modelling, Elsevier, vol. 243(C), pages 101-111.
    2. Wolf, Annett, 2011. "Estimating the potential impact of vegetation on the water cycle requires accurate soil water parameter estimation," Ecological Modelling, Elsevier, vol. 222(15), pages 2595-2605.
    3. Annett Wolf & Patrick Lazzarotto & Harald Bugmann, 2012. "The relative importance of land use and climatic change in Alpine catchments," Climatic Change, Springer, vol. 111(2), pages 279-300, March.
    4. David C. Frank & Jan Esper & Christoph C. Raible & Ulf Büntgen & Valerie Trouet & Benjamin Stocker & Fortunat Joos, 2010. "Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate," Nature, Nature, vol. 463(7280), pages 527-530, January.
    5. Sato, Hisashi & Itoh, Akihiko & Kohyama, Takashi, 2007. "SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach," Ecological Modelling, Elsevier, vol. 200(3), pages 279-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huber, Nica & Bugmann, Harald & Lafond, Valentine, 2018. "Global sensitivity analysis of a dynamic vegetation model: Model sensitivity depends on successional time, climate and competitive interactions," Ecological Modelling, Elsevier, vol. 368(C), pages 377-390.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manusch, Corina & Bugmann, Harald & Heiri, Caroline & Wolf, Annett, 2012. "Tree mortality in dynamic vegetation models – A key feature for accurately simulating forest properties," Ecological Modelling, Elsevier, vol. 243(C), pages 101-111.
    2. Gintautas Mozgeris & Daiva Juknelienė, 2021. "Modeling Future Land Use Development: A Lithuanian Case," Land, MDPI, vol. 10(4), pages 1-21, April.
    3. Daniel Johansson, 2011. "Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles," Climatic Change, Springer, vol. 108(1), pages 107-134, September.
    4. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    5. Taubert, Franziska & Frank, Karin & Huth, Andreas, 2012. "A review of grassland models in the biofuel context," Ecological Modelling, Elsevier, vol. 245(C), pages 84-93.
    6. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    7. Rau, E-Ping & Fischer, Fabian & Joetzjer, Émilie & Maréchaux, Isabelle & Sun, I Fang & Chave, Jérôme, 2022. "Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics," Ecological Modelling, Elsevier, vol. 463(C).
    8. Bellassen, V. & le Maire, G. & Guin, O. & Dhôte, J.F. & Ciais, P. & Viovy, N., 2011. "Modelling forest management within a global vegetation model—Part 2: Model validation from a tree to a continental scale," Ecological Modelling, Elsevier, vol. 222(1), pages 57-75.
    9. Glavan, Matjaž & Miličić, Vesna & Pintar, Marina, 2013. "Finding options to improve catchment water quality—Lessons learned from historical land use situations in a Mediterranean catchment in Slovenia," Ecological Modelling, Elsevier, vol. 261, pages 58-73.
    10. Zhang, Tao & Lichstein, Jeremy W. & Birdsey, Richard A., 2014. "Spatial and temporal heterogeneity in the dynamics of eastern U.S. forests: Implications for developing broad-scale forest dynamics models," Ecological Modelling, Elsevier, vol. 279(C), pages 89-99.
    11. Vance, Richard R. & Steele, Mark A. & Forrester, Graham E., 2010. "Using an individual-based model to quantify scale transition in demographic rate functions: Deaths in a coral reef fish," Ecological Modelling, Elsevier, vol. 221(16), pages 1907-1921.
    12. Roessiger, Joerg & Griess, Verena C. & Härtl, Fabian & Clasen, Christian & Knoke, Thomas, 2013. "How economic performance of a stand increases due to decreased failure risk associated with the admixing of species," Ecological Modelling, Elsevier, vol. 255(C), pages 58-69.
    13. Ruiz-Pérez, G. & González-Sanchis, M. & Del Campo, A.D. & Francés, F., 2016. "Can a parsimonious model implemented with satellite data be used for modelling the vegetation dynamics and water cycle in water-controlled environments?," Ecological Modelling, Elsevier, vol. 324(C), pages 45-53.
    14. Kruse, Stefan & Wieczorek, Mareike & Jeltsch, Florian & Herzschuh, Ulrike, 2016. "Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix," Ecological Modelling, Elsevier, vol. 338(C), pages 101-121.
    15. Bellassen, V. & Le Maire, G. & Dhôte, J.F. & Ciais, P. & Viovy, N., 2010. "Modelling forest management within a global vegetation model—Part 1: Model structure and general behaviour," Ecological Modelling, Elsevier, vol. 221(20), pages 2458-2474.
    16. Wramneby, Anna & Smith, Benjamin & Zaehle, Sönke & Sykes, Martin T., 2008. "Parameter uncertainties in the modelling of vegetation dynamics—Effects on tree community structure and ecosystem functioning in European forest biomes," Ecological Modelling, Elsevier, vol. 216(3), pages 277-290.
    17. Nakagawa, Yoshiaki & Yokozawa, Masayuki & Ito, Akihiko & Hara, Toshihiko, 2017. "Effectively tuning plant growth models with different spatial complexity: A statistical perspective," Ecological Modelling, Elsevier, vol. 361(C), pages 95-112.
    18. Fischer, Rico & Bohn, Friedrich & Dantas de Paula, Mateus & Dislich, Claudia & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Kazmierczak, Martin & Knapp, Nikolai & Lehmann, Sebastian & Paulick, Sebastia, 2016. "Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests," Ecological Modelling, Elsevier, vol. 326(C), pages 124-133.
    19. S. Chersich & K. Rejšek & V. Vranová & M. Bordoni & C. Meisina, 2015. "Climate change impacts on the Alpine ecosystem: an overview with focus on the soil," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 61(11), pages 496-514.
    20. Badouard, Vincyane & Schmitt, Sylvain & Salzet, Guillaume & Gaquiere, Thomas & Rojat, Margaux & Bedeau, Caroline & Brunaux, Olivier & Derroire, Géraldine, 2024. "LoggingLab: An R package to simulate reduced-impact selective logging in tropical forests using forest inventory data," Ecological Modelling, Elsevier, vol. 487(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:282:y:2014:i:c:p:25-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.