IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i23p2741-2750.html
   My bibliography  Save this article

Spatial memory, habitat auto-facilitation and the emergence of fractal home range patterns

Author

Listed:
  • Gautestad, Arild O.
  • Mysterud, Ivar

Abstract

Animals interact with their habitat in a manner which involves both negative and positive feedback mechanisms. We apply a specific modeling approach, “multi-scaled random walk”, for the scenario where a spatially explicit positive feedback process emerges from a combination of a spatial memory-dependent tendency to return to familiar patches and a consequently objective or subjective improvement of the quality of these patches (habitat auto-facilitation). In addition to the potential for local resource improvement from physically altering a patch, primarily known from the ecology of grazing ungulates, auto-facilitation from site fidelity may also embed more subtle subjective, individual-specific advantages from patch familiarity. Under the condition of resource superabundance, fitness gain from intra-home range patch fidelity creates a self-reinforcing use of the preferred patches on expense of a broader foraging in a priori equally favorable patches. Through this process, our simulations show that a spatially fractal dispersion of accumulated locations of the individual will emerge under the given model assumptions. Based on a conjecture that intra-home range patch fidelity depends on spatial memory we apply the multi-scaled random walk model to construct a spatially explicit habitat suitability parameter Hij, which quantifies the dispersion of the generally most constraining resource from the individual's perspective. An intra-home range set of observed H-scores, Hobs, can then be estimated from a simple 2-scale calculation that is derived from the local dispersion of fixes. We show how the spatially explicit habitat utilization index Hobs not necessarily correlates positively with the local density fluctuations of fixes. The H-index solves some well-known problems from using the pattern of local densities of telemetry fixes – the classic utilization distribution – as a proxy variable for relative intra-home range habitat quality and resource selection. A pilot study on a set of telemetry fixes collected from a herd of free-ranging domestic sheep with overlapping summer home ranges illustrates how the H-index may be estimated and interpreted as a first-level approach towards a more extensive analysis of intra-home range habitat resource availability and patch preferences. Spatial memory in combination with site fidelity requires a modeling framework that explicitly describes the property of positive feedback mechanism under auto-facilitation in a spatio-temporally explicit manner.

Suggested Citation

  • Gautestad, Arild O. & Mysterud, Ivar, 2010. "Spatial memory, habitat auto-facilitation and the emergence of fractal home range patterns," Ecological Modelling, Elsevier, vol. 221(23), pages 2741-2750.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:23:p:2741-2750
    DOI: 10.1016/j.ecolmodel.2010.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010004096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. M. Viswanathan & Sergey V. Buldyrev & Shlomo Havlin & M. G. E. da Luz & E. P. Raposo & H. Eugene Stanley, 1999. "Optimizing the success of random searches," Nature, Nature, vol. 401(6756), pages 911-914, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vergara, Pablo M. & Saura, Santiago & Pérez-Hernández, Christian G. & Soto, Gerardo E., 2015. "Hierarchical spatial decisions in fragmented landscapes: Modeling the foraging movements of woodpeckers," Ecological Modelling, Elsevier, vol. 300(C), pages 114-122.
    2. Chloe Bracis & Eliezer Gurarie & Bram Van Moorter & R Andrew Goodwin, 2015. "Memory Effects on Movement Behavior in Animal Foraging," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    2. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    3. Ma, Brian O. & Davis, Brad H. & Gillespie, David R. & VanLaerhoven, Sherah L., 2009. "Incorporating behaviour into simple models of dispersal using the biological control agent Dicyphus hesperus," Ecological Modelling, Elsevier, vol. 220(23), pages 3271-3279.
    4. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    5. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    6. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    7. LaScala-Gruenewald, Diana E. & Mehta, Rohan S. & Liu, Yu & Denny, Mark W., 2019. "Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies," Ecological Modelling, Elsevier, vol. 404(C), pages 69-82.
    8. Cédric Sueur & Léa Briard & Odile Petit, 2011. "Individual Analyses of Lévy Walk in Semi-Free Ranging Tonkean Macaques (Macaca tonkeana)," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-8, October.
    9. Stefano Focardi & Paolo Montanaro & Elena Pecchioli, 2009. "Adaptive Lévy Walks in Foraging Fallow Deer," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-6, August.
    10. Maria C. Mariani & William Kubin & Peter K. Asante & Osei K. Tweneboah & Maria P. Beccar-Varela & Sebastian Jaroszewicz & Hector Gonzalez-Huizar, 2020. "Self-Similar Models: Relationship between the Diffusion Entropy Analysis, Detrended Fluctuation Analysis and Lévy Models," Mathematics, MDPI, vol. 8(7), pages 1-20, June.
    11. Danish A. Ahmed & Sergei V. Petrovskii & Paulo F. C. Tilles, 2018. "The “Lévy or Diffusion” Controversy: How Important Is the Movement Pattern in the Context of Trapping?," Mathematics, MDPI, vol. 6(5), pages 1-27, May.
    12. Nauta, Johannes & Simoens, Pieter & Khaluf, Yara, 2022. "Group size and resource fractality drive multimodal search strategies: A quantitative analysis on group foraging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    13. Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    14. Chudzińska, Magda & Ayllón, Daniel & Madsen, Jesper & Nabe-Nielsen, Jacob, 2016. "Discriminating between possible foraging decisions using pattern-oriented modelling: The case of pink-footed geese in Mid-Norway during their spring migration," Ecological Modelling, Elsevier, vol. 320(C), pages 299-315.
    15. Andrew M Hein & Scott A McKinley, 2013. "Sensory Information and Encounter Rates of Interacting Species," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-11, August.
    16. Cianelli, Daniela & Uttieri, Marco & Strickler, J. Rudi & Zambianchi, Enrico, 2009. "Zooplankton encounters in patchy particle distributions," Ecological Modelling, Elsevier, vol. 220(5), pages 596-604.
    17. Shu Han & Xiaoming Liu & Yan Yang & Hailin Cao & Yuanhong Zhong & Chuanlian Luo, 2021. "Intelligent Algorithm for Variable Scale Adaptive Feature Separation of Mechanical Composite Fault Signals," Energies, MDPI, vol. 14(22), pages 1-13, November.
    18. Maja Varga & Stjepan Bogdan & Marija Dragojević & Damjan Miklić, 2011. "Collective search and decision-making for target localization," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(1), pages 51-65, June.
    19. Marchand, Philippe & Boenke, Morgan & Green, David M., 2017. "A stochastic movement model reproduces patterns of site fidelity and long-distance dispersal in a population of Fowler’s toads (Anaxyrus fowleri)," Ecological Modelling, Elsevier, vol. 360(C), pages 63-69.
    20. Dipierro, Serena & Valdinoci, Enrico, 2021. "Description of an ecological niche for a mixed local/nonlocal dispersal: An evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:23:p:2741-2750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.