IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i6p791-804.html
   My bibliography  Save this article

Uncertainty propagation in vegetation distribution models based on ensemble classifiers

Author

Listed:
  • Peters, Jan
  • Verhoest, Niko E.C.
  • Samson, Roeland
  • Van Meirvenne, Marc
  • Cockx, Liesbet
  • De Baets, Bernard

Abstract

Ensemble learning techniques are increasingly applied for species and vegetation distribution modelling, often resulting in more accurate predictions. At the same time, uncertainty assessment of distribution models is gaining attention. In this study, Random Forests, an ensemble learning technique, is selected for vegetation distribution modelling based on environmental variables. The impact of two important sources of uncertainty, that is the uncertainty on spatial interpolation of environmental variables and the uncertainty on species clustering into vegetation types, is quantified based on sequential Gaussian simulation and pseudo-randomization tests, respectively. An empirical assessment of the uncertainty propagation to the distribution modelling results indicated a gradual decrease in performance with increasing input uncertainty. The test set error ranged from 30.83% to 52.63% and from 30.83% to 83.62%, when the uncertainty ranges on spatial interpolation and on vegetation clustering, respectively, were fully covered. Shannon’s entropy, which is proposed as a measure for uncertainty of ensemble predictions, revealed a similar increasing trend in prediction uncertainty. The implications of these results in an empirical distribution modelling framework are further discussed with respect to monitoring setup, spatial interpolation and species clustering.

Suggested Citation

  • Peters, Jan & Verhoest, Niko E.C. & Samson, Roeland & Van Meirvenne, Marc & Cockx, Liesbet & De Baets, Bernard, 2009. "Uncertainty propagation in vegetation distribution models based on ensemble classifiers," Ecological Modelling, Elsevier, vol. 220(6), pages 791-804.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:6:p:791-804
    DOI: 10.1016/j.ecolmodel.2008.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008005942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larssen, Thorjørn & Høgåsen, Tore & Cosby, B. Jack, 2007. "Impact of time series data on calibration and prediction uncertainty for a deterministic hydrogeochemical model," Ecological Modelling, Elsevier, vol. 207(1), pages 22-33.
    2. Peters, Jan & Baets, Bernard De & Verhoest, Niko E.C. & Samson, Roeland & Degroeve, Sven & Becker, Piet De & Huybrechts, Willy, 2007. "Random forests as a tool for ecohydrological distribution modelling," Ecological Modelling, Elsevier, vol. 207(2), pages 304-318.
    3. Arnold Wollenberg, 1977. "Redundancy analysis an alternative for canonical correlation analysis," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 207-219, June.
    4. Miller, Jennifer & Franklin, Janet & Aspinall, Richard, 2007. "Incorporating spatial dependence in predictive vegetation models," Ecological Modelling, Elsevier, vol. 202(3), pages 225-242.
    5. Bourennane, H. & King, D. & Couturier, A. & Nicoullaud, B. & Mary, B. & Richard, G., 2007. "Uncertainty assessment of soil water content spatial patterns using geostatistical simulations: An empirical comparison of a simulation accounting for single attribute and a simulation accounting for ," Ecological Modelling, Elsevier, vol. 205(3), pages 323-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muñoz-Mas, R. & Martínez-Capel, F. & Alcaraz-Hernández, J.D. & Mouton, A.M., 2015. "Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?," Ecological Modelling, Elsevier, vol. 309, pages 72-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yirigui Yirigui & Sang-Woo Lee & A. Pouyan Nejadhashemi & Matthew R. Herman & Jong-Won Lee, 2019. "Relationships between Riparian Forest Fragmentation and Biological Indicators of Streams," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    2. Vittadini, Giorgio & Minotti, Simona C. & Fattore, Marco & Lovaglio, Pietro G., 2007. "On the relationships among latent variables and residuals in PLS path modeling: The formative-reflective scheme," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5828-5846, August.
    3. Hanafi, Mohamed & Kiers, Henk A.L., 2006. "Analysis of K sets of data, with differential emphasis on agreement between and within sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1491-1508, December.
    4. Kazi-Aoual, Frederique & Hitier, Simon & Sabatier, Robert & Lebreton, Jean-Dominique, 1995. "Refined approximations to permutation tests for multivariate inference," Computational Statistics & Data Analysis, Elsevier, vol. 20(6), pages 643-656, December.
    5. Yikalo H. Araya & Tarmo K. Remmel & Ajith H. Perera, 2016. "What governs the presence of residual vegetation in boreal wildfires?," Journal of Geographical Systems, Springer, vol. 18(2), pages 159-181, April.
    6. Cook, Judith A. & Razzano, Lisa & Cappelleri, Joseph C., 1996. "Canonical correlation analysis of residential and vocational outcomes following psychiatric rehabilitation," Evaluation and Program Planning, Elsevier, vol. 19(4), pages 351-363, November.
    7. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    8. Sarah Mittlefehldt & Erin Bunting & Emily Huff & Joseph Welsh & Robert Goodwin, 2021. "New Methods for Assessing Sustainability of Wood-Burning Energy Facilities: Combining Historical and Spatial Approaches," Energies, MDPI, vol. 14(23), pages 1-18, November.
    9. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    10. Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.
    11. Miaomiao Yang & Keli Zhang & Chenlu Huang & Qinke Yang, 2022. "Effects of Content of Soil Rock Fragments on Soil Erodibility in China," IJERPH, MDPI, vol. 19(2), pages 1-19, January.
    12. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
    13. Wayne DeSarbo & Heungsun Hwang & Ashley Stadler Blank & Eelco Kappe, 2015. "Constrained Stochastic Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 516-534, June.
    14. Bemah Ibrahim & Isaac Ahenkorah & Anthony Ewusi, 2022. "Explainable Risk Assessment of Rockbolts’ Failure in Underground Coal Mines Based on Categorical Gradient Boosting and SHapley Additive exPlanations (SHAP)," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    15. Abby Israëls, 1986. "Reviews," Psychometrika, Springer;The Psychometric Society, vol. 51(3), pages 495-497, September.
    16. Dthenifer Cordeiro Santana & Regimar Garcia dos Santos & Pedro Henrique Neves da Silva & Hemerson Pistori & Larissa Pereira Ribeiro Teodoro & Nerison Luis Poersch & Gileno Brito de Azevedo & Glauce Ta, 2023. "Machine Learning Methods for Woody Volume Prediction in Eucalyptus," Sustainability, MDPI, vol. 15(14), pages 1-11, July.
    17. Takane, Yoshio & Jung, Sunho, 2009. "Regularized nonsymmetric correspondence analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3159-3170, June.
    18. Thoralf Meyer & Paul Holloway & Thomas B. Christiansen & Jennifer A. Miller & Paolo D’Odorico & Gregory S. Okin, 2019. "An Assessment of Multiple Drivers Determining Woody Species Composition and Structure: A Case Study from the Kalahari, Botswana," Land, MDPI, vol. 8(8), pages 1-14, August.
    19. Vanesa Mateo-Pérez & Marina Corral-Bobadilla & Francisco Ortega-Fernández & Vicente Rodríguez-Montequín, 2021. "Determination of Water Depth in Ports Using Satellite Data Based on Machine Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-22, April.
    20. Saeid SHABANI, 2017. "Modelling and mapping of soil damage caused by harvesting in Caspian forests (Iran) using CART and RF data mining techniques," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(9), pages 425-432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:6:p:791-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.