IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i17p1957-1967.html
   My bibliography  Save this article

Proposing an information criterion for individual-based models developed in a pattern-oriented modelling framework

Author

Listed:
  • Piou, Cyril
  • Berger, Uta
  • Grimm, Volker

Abstract

Individual-based models (IBMs) have been improved in quality and reliability in recent years with an approach called pattern-oriented modelling (POM). POM proposes guidelines to develop models reproducing multiple patterns observed on the field and to test systematically how well the IBMs reproduce them. POM studies used generally traditional methods of goodness of fit such as the sum of squares evaluation or ad hoc comparisons of fitting errors and variations. Model selection, however, can be a rigorous statistical approach based on information theory and information criteria such as the Akaike's information criterion (AIC) or the deviance information criterion (DIC). So far, it has not been tried to link POM to these rigorous techniques. The main problems to achieve that are: (a) the difficulty to have likelihood functions for IBMs’ parameters and (b) the possibility to obtain posterior distributions of IBMs’ parameters given the patterns to reproduce. In a first part, this paper answers problem (a) by proposing and explaining how to calculate a deviance measure (POMDEV) for models developed in a context of POM. And while answering the second problem, a second part of the paper proposes an information criterion for model selection in a POM context (the pattern-oriented modelling information criterion: POMIC). This criterion does not yet have the same theoretical foundation as, e.g., AIC, but uses formal analogies to the DIC. In a third part POMIC is tested with a modelling exercise. This exercise shows the potential of POMIC to use multiple patterns for selecting among multiple potential submodels and eventually select the most parsimonious and well fitting model version. We conclude that POMIC, although being a heuristically derived approach, can greatly improve the POM framework.

Suggested Citation

  • Piou, Cyril & Berger, Uta & Grimm, Volker, 2009. "Proposing an information criterion for individual-based models developed in a pattern-oriented modelling framework," Ecological Modelling, Elsevier, vol. 220(17), pages 1957-1967.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:17:p:1957-1967
    DOI: 10.1016/j.ecolmodel.2009.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438000900324X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kramer-Schadt, Stephanie & Revilla, Eloy & Wiegand, Thorsten & Grimm, Volker, 2007. "Patterns for parameters in simulation models," Ecological Modelling, Elsevier, vol. 204(3), pages 553-556.
    2. Jachner, Stefanie & Gerald van den Boogaart, K. & Petzoldt, Thomas, 2007. "Statistical Methods for the Qualitative Assessment of Dynamic Models with Time Delay (R Package qualV)," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i08).
    3. Angelika van der Linde, 2005. "DIC in variable selection," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(1), pages 45-56, February.
    4. Piou, Cyril & Berger, Uta & Hildenbrandt, Hanno & Grimm, Volker & Diele, Karen & D’Lima, Coralie, 2007. "Simulating cryptic movements of a mangrove crab: Recovery phenomena after small scale fishery," Ecological Modelling, Elsevier, vol. 205(1), pages 110-122.
    5. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    6. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bauduin, Sarah & McIntire, Eliot & St-Laurent, Martin-Hugues & Cumming, Steve, 2016. "Overcoming challenges of sparse telemetry data to estimate caribou movement," Ecological Modelling, Elsevier, vol. 335(C), pages 24-34.
    2. Grimm, Volker & Berger, Uta, 2016. "Robustness analysis: Deconstructing computational models for ecological theory and applications," Ecological Modelling, Elsevier, vol. 326(C), pages 162-167.
    3. Jakoby, Oliver & Grimm, Volker & Frank, Karin, 2014. "Pattern-oriented parameterization of general models for ecological application: Towards realistic evaluations of management approaches," Ecological Modelling, Elsevier, vol. 275(C), pages 78-88.
    4. Peters, Ronny & Lin, Yue & Berger, Uta, 2016. "Machine learning meets individual-based modelling: Self-organising feature maps for the analysis of below-ground competition among plants," Ecological Modelling, Elsevier, vol. 326(C), pages 142-151.
    5. Byer, Nathan W. & Reid, Brendan N., 2022. "The emergence of imperfect philopatry and fidelity in spatially and temporally heterogeneous environments," Ecological Modelling, Elsevier, vol. 468(C).
    6. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    7. Juste Raimbault & Julien Perret, 2019. "Generating urban morphologies at large scales," Post-Print halshs-02265415, HAL.
    8. Piou, Cyril & Prévost, Etienne, 2012. "A demo-genetic individual-based model for Atlantic salmon populations: Model structure, parameterization and sensitivity," Ecological Modelling, Elsevier, vol. 231(C), pages 37-52.
    9. Duboz, Raphaël & Versmisse, David & Travers, Morgane & Ramat, Eric & Shin, Yunne-Jai, 2010. "Application of an evolutionary algorithm to the inverse parameter estimation of an individual-based model," Ecological Modelling, Elsevier, vol. 221(5), pages 840-849.
    10. Jager, Henriette I. & DeAngelis, Donald L., 2018. "The confluences of ideas leading to, and the flow of ideas emerging from, individual-based modeling of riverine fishes," Ecological Modelling, Elsevier, vol. 384(C), pages 341-352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
    2. Yuki Kawakubo & Tatsuya Kubokawa & Muni S. Srivastava, 2015. "A Variant of AIC Using Bayesian Marginal Likelihood," CIRJE F-Series CIRJE-F-971, CIRJE, Faculty of Economics, University of Tokyo.
    3. Mostafa Sharafeldin & Omar Albatayneh & Ahmed Farid & Khaled Ksaibati, 2022. "A Bayesian Approach to Examine the Impact of Pavement Friction on Intersection Safety," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    4. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
    5. Lu, Zhenqiu (Laura) & Zhang, Zhiyong, 2014. "Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 220-240.
    6. Honghu Liu & Yan Zheng & Jie Shen, 2008. "Goodness-of-fit measures of R2 for repeated measures mixed effect models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1081-1092.
    7. Lee, Jung Wun & Chung, Hwan & Jeon, Saebom, 2021. "Bayesian multivariate latent class profile analysis: Exploring the developmental progression of youth depression and substance use," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    8. Yuki Kawakubo & Tatsuya Kubokawa & Muni S. Srivastava, 2018. "A Variant of AIC Based on the Bayesian Marginal Likelihood," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 60-84, May.
    9. Congdon, P., 2005. "Bayesian predictive model comparison via parallel sampling," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 735-753, April.
    10. Pitchforth, Jegar & Wu, Paul & Fookes, Clinton & Mengersen, Kerrie, 2015. "Processing passengers efficiently: An analysis of airport processing times for international passengers," Journal of Air Transport Management, Elsevier, vol. 49(C), pages 35-45.
    11. Amir Dezfouli & Kristi Griffiths & Fabio Ramos & Peter Dayan & Bernard W Balleine, 2019. "Models that learn how humans learn: The case of decision-making and its disorders," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-33, June.
    12. Shriner, Daniel & Yi, Nengjun, 2009. "Deviance information criterion (DIC) in Bayesian multiple QTL mapping," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1850-1860, March.
    13. Terry Elrod & Gerald Häubl & Steven Tipps, 2012. "Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 358-387, April.
    14. Briana J. K. Stephenson & Amy H. Herring & Andrew F. Olshan, 2022. "Derivation of maternal dietary patterns accounting for regional heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1957-1977, November.
    15. Rankin, Peter Sheldon & Lemos, Ricardo T., 2015. "An alternative surplus production model," Ecological Modelling, Elsevier, vol. 313(C), pages 109-126.
    16. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    17. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    18. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    19. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    20. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:17:p:1957-1967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.