IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006903.html
   My bibliography  Save this article

Models that learn how humans learn: The case of decision-making and its disorders

Author

Listed:
  • Amir Dezfouli
  • Kristi Griffiths
  • Fabio Ramos
  • Peter Dayan
  • Bernard W Balleine

Abstract

Popular computational models of decision-making make specific assumptions about learning processes that may cause them to underfit observed behaviours. Here we suggest an alternative method using recurrent neural networks (RNNs) to generate a flexible family of models that have sufficient capacity to represent the complex learning and decision- making strategies used by humans. In this approach, an RNN is trained to predict the next action that a subject will take in a decision-making task and, in this way, learns to imitate the processes underlying subjects’ choices and their learning abilities. We demonstrate the benefits of this approach using a new dataset drawn from patients with either unipolar (n = 34) or bipolar (n = 33) depression and matched healthy controls (n = 34) making decisions on a two-armed bandit task. The results indicate that this new approach is better than baseline reinforcement-learning methods in terms of overall performance and its capacity to predict subjects’ choices. We show that the model can be interpreted using off-policy simulations and thereby provides a novel clustering of subjects’ learning processes—something that often eludes traditional approaches to modelling and behavioural analysis.Author summary: Computational models of decision-making provide a quantitative characterisation of the learning and choice processes behind human actions. Designing a computational model is often based on manual engineering with an iterative process to examine the consistency between different aspects of the model and the empirical data. In practice, however, inconsistencies between the model and observed behaviours can remain hidden behind examined summary statistics. To address this limitation, we developed a recurrent neural network (RNNs) as a flexible type of model that can automatically characterize human decision-making processes without requiring tweaking and engineering. To show the benefits of this new approach, we collected data on a decision-making task conducted on subjects with either bipolar or unipolar depression, as well as healthy controls. The results showed that, indeed, important aspects of decision-making remained uncaptured by typical computational models and even their enhanced variants, but were captured by RNNs automatically. Further, we were able to show that the nature of such processes can be unveiled by simulating the model under various conditions. This new approach can be used, therefore, as a standalone model of decision-making or as a baseline model to evaluate how well other candidate models fit observed data.

Suggested Citation

  • Amir Dezfouli & Kristi Griffiths & Fabio Ramos & Peter Dayan & Bernard W Balleine, 2019. "Models that learn how humans learn: The case of decision-making and its disorders," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-33, June.
  • Handle: RePEc:plo:pcbi00:1006903
    DOI: 10.1371/journal.pcbi.1006903
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006903
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006903&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel E Acuña & Paul Schrater, 2010. "Structure Learning in Human Sequential Decision-Making," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-12, December.
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Angelika van der Linde, 2005. "DIC in variable selection," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(1), pages 45-56, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiva Farashahi & Alireza Soltani, 2021. "Computational mechanisms of distributed value representations and mixed learning strategies," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    2. Amir Bagherpour, 2021. "How computer simulations enhance geopolitical decision‐making: A commentary on Lustick and Tetlock 2021," Futures & Foresight Science, John Wiley & Sons, vol. 3(2), June.
    3. Amir Dezfouli & Bernard W Balleine, 2019. "Learning the structure of the world: The adaptive nature of state-space and action representations in multi-stage decision-making," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
    2. Cantoni, Eva & Jacot, Nadège & Ghisletta, Paolo, 2024. "Review and comparison of measures of explained variation and model selection in linear mixed-effects models," Econometrics and Statistics, Elsevier, vol. 29(C), pages 150-168.
    3. Elyse H Norton & Stephen M Fleming & Nathaniel D Daw & Michael S Landy, 2017. "Suboptimal Criterion Learning in Static and Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-28, January.
    4. Mostafa Sharafeldin & Omar Albatayneh & Ahmed Farid & Khaled Ksaibati, 2022. "A Bayesian Approach to Examine the Impact of Pavement Friction on Intersection Safety," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    5. Shriner, Daniel & Yi, Nengjun, 2009. "Deviance information criterion (DIC) in Bayesian multiple QTL mapping," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1850-1860, March.
    6. Briana J. K. Stephenson & Amy H. Herring & Andrew F. Olshan, 2022. "Derivation of maternal dietary patterns accounting for regional heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1957-1977, November.
    7. Rankin, Peter Sheldon & Lemos, Ricardo T., 2015. "An alternative surplus production model," Ecological Modelling, Elsevier, vol. 313(C), pages 109-126.
    8. Piou, Cyril & Berger, Uta & Grimm, Volker, 2009. "Proposing an information criterion for individual-based models developed in a pattern-oriented modelling framework," Ecological Modelling, Elsevier, vol. 220(17), pages 1957-1967.
    9. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    10. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    11. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    12. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    13. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    14. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    15. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    16. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    17. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    18. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    19. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    20. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.