IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0045872.html
   My bibliography  Save this article

Post-Hoc Pattern-Oriented Testing and Tuning of an Existing Large Model: Lessons from the Field Vole

Author

Listed:
  • Christopher J Topping
  • Trine Dalkvist
  • Volker Grimm

Abstract

Pattern-oriented modeling (POM) is a general strategy for modeling complex systems. In POM, multiple patterns observed at different scales and hierarchical levels are used to optimize model structure, to test and select sub-models of key processes, and for calibration. So far, POM has been used for developing new models and for models of low to moderate complexity. It remains unclear, though, whether the basic idea of POM to utilize multiple patterns, could also be used to test and possibly develop existing and established models of high complexity. Here, we use POM to test, calibrate, and further develop an existing agent-based model of the field vole (Microtus agrestis), which was developed and tested within the ALMaSS framework. This framework is complex because it includes a high-resolution representation of the landscape and its dynamics, of the individual’s behavior, and of the interaction between landscape and individual behavior. Results of fitting to the range of patterns chosen were generally very good, but the procedure required to achieve this was long and complicated. To obtain good correspondence between model and the real world it was often necessary to model the real world environment closely. We therefore conclude that post-hoc POM is a useful and viable way to test a highly complex simulation model, but also warn against the dangers of over-fitting to real world patterns that lack details in their explanatory driving factors. To overcome some of these obstacles we suggest the adoption of open-science and open-source approaches to ecological simulation modeling.

Suggested Citation

  • Christopher J Topping & Trine Dalkvist & Volker Grimm, 2012. "Post-Hoc Pattern-Oriented Testing and Tuning of an Existing Large Model: Lessons from the Field Vole," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0045872
    DOI: 10.1371/journal.pone.0045872
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045872
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0045872&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0045872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Topping, Chris J. & Høye, Toke T. & Olesen, Carsten Riis, 2010. "Opening the black box—Development, testing and documentation of a mechanistically rich agent-based model," Ecological Modelling, Elsevier, vol. 221(2), pages 245-255.
    2. Trine Dalkvist & Richard M Sibly & Chris J Topping, 2011. "How Predation and Landscape Fragmentation Affect Vole Population Dynamics," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-8, July.
    3. Latombe, Guillaume & Parrott, Lael & Fortin, Daniel, 2011. "Levels of emergence in individual based models: Coping with scarcity of data and pattern redundancy," Ecological Modelling, Elsevier, vol. 222(9), pages 1557-1568.
    4. Topping, Christopher John & Høye, Toke Thomas & Odderskær, Peter & Aebischer, Nicholas J., 2010. "A pattern-oriented modelling approach to simulating populations of grey partridge," Ecological Modelling, Elsevier, vol. 221(5), pages 729-737.
    5. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    6. Piou, Cyril & Berger, Uta & Grimm, Volker, 2009. "Proposing an information criterion for individual-based models developed in a pattern-oriented modelling framework," Ecological Modelling, Elsevier, vol. 220(17), pages 1957-1967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher J Topping & Peter Odderskær & Johnny Kahlert, 2013. "Modelling Skylarks (Alauda arvensis) to Predict Impacts of Changes in Land Management and Policy: Development and Testing of an Agent-Based Model," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    2. Bauduin, Sarah & McIntire, Eliot & St-Laurent, Martin-Hugues & Cumming, Steve, 2016. "Overcoming challenges of sparse telemetry data to estimate caribou movement," Ecological Modelling, Elsevier, vol. 335(C), pages 24-34.
    3. Christopher J Topping & Peter Odderskær & Johnny Kahlert, 2013. "Modelling Skylarks (Alauda arvensis) to Predict Impacts of Changes in Land Management and Policy: Development and Testing of an Agent-Based Model," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-15, June.
    4. Guillaume Ducarme & Jean-François Hamel & Stéphanie Brun & Hugo Madar & Benjamin Merlot & Loïc Sentilhes, 2017. "Sexual function and postpartum depression 6 months after attempted operative vaginal delivery according to fetal head station: A prospective population-based cohort study," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-17, June.
    5. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
    6. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    7. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    8. Byrd, T. A. & Marshall, T. E., 1997. "Relating information technology investment to organizational performance: a causal model analysis," Omega, Elsevier, vol. 25(1), pages 43-56, February.
    9. Herbert Hoijtink & Meinte Vollema, 2003. "Contemporary Extensions of the Rasch Model," Quality & Quantity: International Journal of Methodology, Springer, vol. 37(3), pages 263-276, August.
    10. Jaewoong Yun, 2023. "Strategies for Improving the Sustainability of Fare-Free Policy for the Elderly through Preferences by Travel Modes," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    11. Malerba, Martino E. & Connolly, Sean R. & Heimann, Kirsten, 2015. "An experimentally validated nitrate–ammonium–phytoplankton model including effects of starvation length and ammonium inhibition on nitrate uptake," Ecological Modelling, Elsevier, vol. 317(C), pages 30-40.
    12. Aline Riboli Marasca & Maurício Scopel Hoffmann & Anelise Reis Gaya & Denise Ruschel Bandeira, 2021. "Subjective Well-Being and Psychopathology Symptoms: Mental Health Profiles and their Relations with Academic Achievement in Brazilian Children," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 14(3), pages 1121-1137, June.
    13. Friederike Paetz, 2016. "Persönlichkeitsmerkmale als Segmentierungsvariablen: Eine empirische Studie [Personality traits for market segmentation: An empirical study]," Schmalenbach Journal of Business Research, Springer, vol. 68(3), pages 279-306, August.
    14. Emre Demirkaya & Yang Feng & Pallavi Basu & Jinchi Lv, 2022. "Large-scale model selection in misspecified generalized linear models [Information theory and an extension of the maximum likelihood principle]," Biometrika, Biometrika Trust, vol. 109(1), pages 123-136.
    15. Grimm, Volker & Berger, Uta, 2016. "Robustness analysis: Deconstructing computational models for ecological theory and applications," Ecological Modelling, Elsevier, vol. 326(C), pages 162-167.
    16. Rosbergen, Edward & Wedel, Michel & Pieters, Rik, 1997. "Analyzing visual attention tot repeated print advertising using scanpath theory," Research Report 97B32, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    17. Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
    18. Nalan Basturk & Richard Paap & Dick van Dijk, 2008. "Structural Differences in Economic Growth," Tinbergen Institute Discussion Papers 08-085/4, Tinbergen Institute.
    19. Golob, Thomas F. & Regan, A C, 2002. "Trucking Industry Preferences for Driver Traveler Information Using Wireless Internet-enabled Devices," University of California Transportation Center, Working Papers qt40q8h6sf, University of California Transportation Center.
    20. Golob, Thomas F. & Regan, A C, 2003. "Traffic Congestion and Trucking Managers' Use of Automated Routing and Scheduling," University of California Transportation Center, Working Papers qt74z234n4, University of California Transportation Center.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0045872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.