IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i13p1724-1734.html
   My bibliography  Save this article

Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies

Author

Listed:
  • Rahman, Md. Rejaur
  • Shi, Z.H.
  • Chongfa, Cai

Abstract

Soil erosion hazard maps can be an essential tool in erosion prone areas as they explain and display the distribution of hazards and areas likely to be affected to different magnitudes. Therefore, it is very useful to planners and policy makers initiating remedial measures and for prioritizing areas. In this study, a numerical model was developed for soil erosion hazard assessment, in which Z-score analysis was combined with a geographical information system (GIS) to compute a synthetic soil erosion hazard index (SEHI). For this model, nine factors which have notable impact on soil erosion were selected. To generate the selected factors remote sensing, analytical hierarchy process (AHP) and GIS techniques along with spatial models were applied. To standardize all of the factors and establish the factor weights, the AHP method was adopted. For Z-score analysis with selected standardized factors, the Integrated Land and Water Information System (ILWIS) software was used and nine individual layers with Z-scores were prepared. Afterwards, the layers were integrated with their factor weights by means of a weighted linear combination to derive a SEHI value for each pixel. To classify the discrete SEHI map to represent a meaningful regionalization of soil erosion hazard, the equal distance cluster principle was used and graded into four levels of hazard; very high, high, moderate and low. The results depicted that in general, a moderate hazardous condition of soil erosion was found in the study area and the proposed approach was also able to identify the areas under high and very high hazards that require urgent intervention on a priority basis. Based on this study, comprehensive erosion hazard management strategies were anticipated for the efficient management of present and future erosion disaster in the area.

Suggested Citation

  • Rahman, Md. Rejaur & Shi, Z.H. & Chongfa, Cai, 2009. "Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies," Ecological Modelling, Elsevier, vol. 220(13), pages 1724-1734.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:13:p:1724-1734
    DOI: 10.1016/j.ecolmodel.2009.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009002634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Onyando & P. Kisoyan & M. Chemelil, 2005. "Estimation of Potential Soil Erosion for River Perkerra Catchment in Kenya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(2), pages 133-143, April.
    2. Christian Conoscenti & Cipriano Maggio & Edoardo Rotigliano, 2008. "Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 287-305, September.
    3. TH. Gournellos & N. Evelpidou & A. Vassilopoulos, 2004. "Developing an Erosion Risk Map Using Soft Computing Methods (Case Study at Sifnos Island)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(1), pages 63-83, January.
    4. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    5. Giuseppe Mendicino, 1999. "Sensitivity Analysis on GIS Procedures for the Estimate of Soil Erosion Risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 231-253, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamed Ahmadpour & Ommolbanin Bazrafshan & Elham Rafiei-Sardooi & Hossein Zamani & Thomas Panagopoulos, 2021. "Gully Erosion Susceptibility Assessment in the Kondoran Watershed Using Machine Learning Algorithms and the Boruta Feature Selection," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    2. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
    3. Alelgn Ewunetu & Belay Simane & Ermias Teferi & Benjamin F. Zaitchik, 2021. "Mapping and Quantifying Comprehensive Land Degradation Status Using Spatial Multicriteria Evaluation Technique in the Headwaters Area of Upper Blue Nile River," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
    4. Andrew K. Marondedze & Brigitta Schütt, 2020. "Assessment of Soil Erosion Using the RUSLE Model for the Epworth District of the Harare Metropolitan Province, Zimbabwe," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    5. Bo Hu & Bangxin Chen & Jing Na & Jianqun Yao & Zhimin Zhang & Xiangfeng Du, 2022. "Urban Surface Deformation Management: Assessing Dangerous Subsidence Areas through Regional Surface Deformation, Natural Factors, and Human Activities," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    6. Ammar Ak. Ali & Alaa M. Al-Abbadi & Fadhil K. Jabbar & Hassan Alzahrani & Samie Hamad, 2023. "Predicting Soil Erosion Rate at Transboundary Sub-Watersheds in Ali Al-Gharbi, Southern Iraq, Using RUSLE-Based GIS Model," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    7. Liguang Jiang & Zhijun Yao & Zhaofei Liu & Shanshan Wu & Rui Wang & Lei Wang, 2015. "Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1831-1847, April.
    8. Ranghu Wang & Shuwen Zhang & Jiuchun Yang & Luoman Pu & Chaobin Yang & Lingxue Yu & Liping Chang & Kun Bu, 2016. "Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China," Sustainability, MDPI, vol. 8(4), pages 1-20, March.
    9. Haibo Zhang & Jianjun Zhang & Shouhong Zhang & Chunxue Yu & Ruoxiu Sun & Dandan Wang & Chunzhu Zhu & Jianan Zhang, 2020. "Identification of Priority Areas for Soil and Water Conservation Planning Based on Multi-Criteria Decision Analysis Using Choquet Integral," IJERPH, MDPI, vol. 17(4), pages 1-22, February.
    10. Shifa Chen & Wen Liu & Yonghui Bai & Xiaoying Luo & Hangfei Li & Xuan Zha, 2021. "Evaluation of watershed soil erosion hazard using combination weight and GIS: a case study from eroded soil in Southern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1603-1628, November.
    11. Salman A. H. Selmy & Salah H. Abd Al-Aziz & Raimundo Jiménez-Ballesta & Francisco Jesús García-Navarro & Mohamed E. Fadl, 2021. "Modeling and Assessing Potential Soil Erosion Hazards Using USLE and Wind Erosion Models in Integration with GIS Techniques: Dakhla Oasis, Egypt," Agriculture, MDPI, vol. 11(11), pages 1-29, November.
    12. Bashar Bashir & Abdullah Alsalman, 2024. "Morphometric and Soil Erosion Characterization Based on Geospatial Analysis and Drainage Basin Prioritization of the Rabigh Area Along the Eastern Red Sea Coastal Plain, Saudi Arabia," Sustainability, MDPI, vol. 16(20), pages 1-26, October.
    13. Gezahegn Weldu Woldemariam & Arus Edo Harka, 2020. "Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia," Land, MDPI, vol. 9(4), pages 1-25, April.
    14. Deepak Agnihotri & Tarun Kumar & Dalchand Jhariya, 2021. "Intelligent vulnerability prediction of soil erosion hazard in semi-arid and humid region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2524-2551, February.
    15. Xiangqun Xie & Xinke Wang & Zhenfeng Wang & Hong Lin & Huili Xie & Zhiyong Shi & Xiaoting Hu & Xingzhao Liu, 2023. "Influence of Landscape Pattern Evolution on Soil Conservation in a Red Soil Hilly Watershed of Southern China," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    16. Chuhong Shen & Kangning Xiong & Tian Shu, 2022. "Dynamic Evolution and Quantitative Attribution of Soil Erosion Based on Slope Units: A Case Study of a Karst Plateau-Gorge Area in SW China," Land, MDPI, vol. 11(8), pages 1-18, July.
    17. Ioannis K. Tsanis & Konstantinos D. Seiradakis & Sofia Sarchani & Ioanna S. Panagea & Dimitrios D. Alexakis & Aristeidis G. Koutroulis, 2021. "The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment," Land, MDPI, vol. 10(9), pages 1-17, September.
    18. D. Mandal & S. Patra & N. K. Sharma & N. M. Alam & C. Jana & R. Lal, 2023. "Impacts of Soil Erosion on Soil Quality and Agricultural Sustainability in the North-Western Himalayan Region of India," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    19. Mahran Sadiq & Guang Li & Nasir Rahim & Majid Mahmood Tahir, 2021. "Sustainable Conservation Tillage Technique for Improving Soil Health by Enhancing Soil Physicochemical Quality Indicators under Wheat Mono-Cropping System Conditions," Sustainability, MDPI, vol. 13(15), pages 1-31, July.
    20. Hadi Eskandari Damaneh & Hassan Khosravi & Khalil Habashi & Hamed Eskandari Damaneh & John P. Tiefenbacher, 2022. "The impact of land use and land cover changes on soil erosion in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2185-2205, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    2. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    3. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    4. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    5. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    6. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    7. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    8. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    9. Mangla, Sachin Kumar & Srivastava, Praveen Ranjan & Eachempati, Prajwal & Tiwari, Aviral Kumar, 2024. "Exploring the impact of key performance factors on energy markets: From energy risk management perspectives," Energy Economics, Elsevier, vol. 131(C).
    10. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    11. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    12. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    13. Jitendar Kumar Khatri & Bhimaraya Metri, 2016. "SWOT-AHP Approach for Sustainable Manufacturing Strategy Selection: A Case of Indian SME," Global Business Review, International Management Institute, vol. 17(5), pages 1211-1226, October.
    14. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    16. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    17. Om Prakash Mishra & Mahesh Chand & Krishan Kumar & Prashant Mishra, 2023. "Investigating applicability of green supply chain management in manufacturing sectors," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1183-1196, August.
    18. David Han-Min Wang & Quang Linh Huynh, 2013. "Mediating Role of Knowledge Management in Effect of Management Accounting Practices on Firm Performance," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 3(3), pages 1-10, June.
    19. Luis Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Alejandro Alvarado-Iniesta & David Luviano Cruz & Zeshui Xu, 2018. "MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    20. Neha Arora & Naresh Kumar, 2021. "Does Financial Inclusion Promote Human Development? Evidence from India," Jindal Journal of Business Research, , vol. 10(2), pages 163-184, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:13:p:1724-1734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.