IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8177-d598856.html
   My bibliography  Save this article

Sustainable Conservation Tillage Technique for Improving Soil Health by Enhancing Soil Physicochemical Quality Indicators under Wheat Mono-Cropping System Conditions

Author

Listed:
  • Mahran Sadiq

    (College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
    Department of Soil and Environmental Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan)

  • Guang Li

    (College of Forestry, Gansu Agricultural University, Lanzhou 730070, China)

  • Nasir Rahim

    (Department of Soil and Environmental Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan)

  • Majid Mahmood Tahir

    (Department of Soil and Environmental Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan)

Abstract

An improved understanding of the effect of conservation tillage on soil physicochemical quality indicators is obligatory to manage and conserve soil in a climate change scenario. Tillage strategies change soil physicochemical characteristics, consequently modifying crop yields. Conservation tillage is generally used to improve the soil physicochemical characteristics globally. However, the impact of conservation tillage on different soil depths under wheat cultivation is not well documented. A 3-year study was conducted using a randomized complete block design (RCDB). The objective of this research was to specifically study soil physicochemical indicators (soil bulk density, porosity, hydraulic conductivity, water content, temperature, nitrogen, phosphorous, potassium, C:N ratio, pH) and (crop yield) in conventional tillage (CT), straw incorporation into the conventionally tilled soil (CTS), no-tillage (NT), and stubble-retention to the no-tilled soil (NTS) measures under wheat monocropping system across different soil layers. Averaged over 0–40 cm soil layer, the results depicted scarce differences among the tillage practices regarding soil bulk density, porosity, water content and hydraulic conductivity. CT increased soil temperature over conservation tillage systems. Overall, conservation tillage improved soil total nitrogen, available phosphorous, total potassium, C:N ratio and yield than CT, whilst it decreased soil pH. We conclude that NTS and CTS are the best strategies to enhance soil health under wheat mono-cropping system conditions.

Suggested Citation

  • Mahran Sadiq & Guang Li & Nasir Rahim & Majid Mahmood Tahir, 2021. "Sustainable Conservation Tillage Technique for Improving Soil Health by Enhancing Soil Physicochemical Quality Indicators under Wheat Mono-Cropping System Conditions," Sustainability, MDPI, vol. 13(15), pages 1-31, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8177-:d:598856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahman, Md. Rejaur & Shi, Z.H. & Chongfa, Cai, 2009. "Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies," Ecological Modelling, Elsevier, vol. 220(13), pages 1724-1734.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianyu Yuan & Mahran Sadiq & Nasir Rahim & Majid Mahmood Tahir & Yunliang Liang & Macao Zhuo & Lijuan Yan & Aqila Shaheen & Basharat Mahmood & Guang Li, 2023. "Changes in Soil Properties and Crop Yield under Sustainable Conservation Tillage Systems in Spring Wheat Agroecosystems," Land, MDPI, vol. 12(6), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuhong Shen & Kangning Xiong & Tian Shu, 2022. "Dynamic Evolution and Quantitative Attribution of Soil Erosion Based on Slope Units: A Case Study of a Karst Plateau-Gorge Area in SW China," Land, MDPI, vol. 11(8), pages 1-18, July.
    2. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
    3. Liguang Jiang & Zhijun Yao & Zhaofei Liu & Shanshan Wu & Rui Wang & Lei Wang, 2015. "Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1831-1847, April.
    4. Hadi Eskandari Damaneh & Hassan Khosravi & Khalil Habashi & Hamed Eskandari Damaneh & John P. Tiefenbacher, 2022. "The impact of land use and land cover changes on soil erosion in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2185-2205, February.
    5. Hamed Ahmadpour & Ommolbanin Bazrafshan & Elham Rafiei-Sardooi & Hossein Zamani & Thomas Panagopoulos, 2021. "Gully Erosion Susceptibility Assessment in the Kondoran Watershed Using Machine Learning Algorithms and the Boruta Feature Selection," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    6. Salman A. H. Selmy & Salah H. Abd Al-Aziz & Raimundo Jiménez-Ballesta & Francisco Jesús García-Navarro & Mohamed E. Fadl, 2021. "Modeling and Assessing Potential Soil Erosion Hazards Using USLE and Wind Erosion Models in Integration with GIS Techniques: Dakhla Oasis, Egypt," Agriculture, MDPI, vol. 11(11), pages 1-29, November.
    7. Bashar Bashir & Abdullah Alsalman, 2024. "Morphometric and Soil Erosion Characterization Based on Geospatial Analysis and Drainage Basin Prioritization of the Rabigh Area Along the Eastern Red Sea Coastal Plain, Saudi Arabia," Sustainability, MDPI, vol. 16(20), pages 1-26, October.
    8. Shifa Chen & Wen Liu & Yonghui Bai & Xiaoying Luo & Hangfei Li & Xuan Zha, 2021. "Evaluation of watershed soil erosion hazard using combination weight and GIS: a case study from eroded soil in Southern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1603-1628, November.
    9. Gezahegn Weldu Woldemariam & Arus Edo Harka, 2020. "Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia," Land, MDPI, vol. 9(4), pages 1-25, April.
    10. Bo Hu & Bangxin Chen & Jing Na & Jianqun Yao & Zhimin Zhang & Xiangfeng Du, 2022. "Urban Surface Deformation Management: Assessing Dangerous Subsidence Areas through Regional Surface Deformation, Natural Factors, and Human Activities," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    11. Deepak Agnihotri & Tarun Kumar & Dalchand Jhariya, 2021. "Intelligent vulnerability prediction of soil erosion hazard in semi-arid and humid region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2524-2551, February.
    12. Alelgn Ewunetu & Belay Simane & Ermias Teferi & Benjamin F. Zaitchik, 2021. "Mapping and Quantifying Comprehensive Land Degradation Status Using Spatial Multicriteria Evaluation Technique in the Headwaters Area of Upper Blue Nile River," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
    13. D. Mandal & S. Patra & N. K. Sharma & N. M. Alam & C. Jana & R. Lal, 2023. "Impacts of Soil Erosion on Soil Quality and Agricultural Sustainability in the North-Western Himalayan Region of India," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    14. Haibo Zhang & Jianjun Zhang & Shouhong Zhang & Chunxue Yu & Ruoxiu Sun & Dandan Wang & Chunzhu Zhu & Jianan Zhang, 2020. "Identification of Priority Areas for Soil and Water Conservation Planning Based on Multi-Criteria Decision Analysis Using Choquet Integral," IJERPH, MDPI, vol. 17(4), pages 1-22, February.
    15. Andrew K. Marondedze & Brigitta Schütt, 2020. "Assessment of Soil Erosion Using the RUSLE Model for the Epworth District of the Harare Metropolitan Province, Zimbabwe," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    16. Ranghu Wang & Shuwen Zhang & Jiuchun Yang & Luoman Pu & Chaobin Yang & Lingxue Yu & Liping Chang & Kun Bu, 2016. "Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China," Sustainability, MDPI, vol. 8(4), pages 1-20, March.
    17. Ammar Ak. Ali & Alaa M. Al-Abbadi & Fadhil K. Jabbar & Hassan Alzahrani & Samie Hamad, 2023. "Predicting Soil Erosion Rate at Transboundary Sub-Watersheds in Ali Al-Gharbi, Southern Iraq, Using RUSLE-Based GIS Model," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    18. Ioannis K. Tsanis & Konstantinos D. Seiradakis & Sofia Sarchani & Ioanna S. Panagea & Dimitrios D. Alexakis & Aristeidis G. Koutroulis, 2021. "The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment," Land, MDPI, vol. 10(9), pages 1-17, September.
    19. Xiangqun Xie & Xinke Wang & Zhenfeng Wang & Hong Lin & Huili Xie & Zhiyong Shi & Xiaoting Hu & Xingzhao Liu, 2023. "Influence of Landscape Pattern Evolution on Soil Conservation in a Red Soil Hilly Watershed of Southern China," Sustainability, MDPI, vol. 15(2), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8177-:d:598856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.