IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v214y2008i2p125-140.html
   My bibliography  Save this article

Emerging school structures and collective dynamics in spawning herring: A simulation study

Author

Listed:
  • Vabø, Rune
  • Skaret, Georg

Abstract

Schooling fish are known to display various collective behaviours depending on ecological context and life history situation. In Norwegian spring spawning herring (NSS-herring) (Clupea harengus) different trade-offs during the seasons of feeding, overwintering, migration and spawning are likely to influence school morphology and behaviour. In the field, hydro acoustics are able to record collective patterns, but hardly the mechanisms of how individual decisions and interactions lead to the observed formations. Individual based models (IBMs) on the other hand, are promising simulation tools for investigating how low-level individual behaviour influences large-scale behaviour. We have used this approach with a rule based school model in order to gain understanding of how certain school patterns can emerge during the spawning of NSS-herring. Response to predation and motivation towards spawning are added to the response to nearby fish. Simply by varying population size and synchronisation of spawning motivation we find different system responses in terms of school morphology and dynamics. With high motivational synchronisation, the system is mainly represented by one integrated school, whereas low degree of synchronisation presents a system with frequent split-offs of small schools. An intermediate degree of synchronisation leads to a more complex situation with schools or layers in a dynamic vertical contact and formation of vertical ‘hourglasses’ or cylindrical shaped schools. This suggests that the degree of motivational synchronisation between individuals in a school will determine whether or to what degree a school splits into different components or remains integrated. We also find that with increasing population size there are new system behaviours emerging, not present with lower population size. Larger populations lead to horizontal extension of the pre-spawning components resulting in a double layer system where vertical bridges connecting the two layers are established. The cylindrical bridges are truly emergent properties of the system, formed and maintained by ovulating and spent herring moving across these structures. Similar school formations with vertical connections have been observed acoustically in spawning herring schools.

Suggested Citation

  • Vabø, Rune & Skaret, Georg, 2008. "Emerging school structures and collective dynamics in spawning herring: A simulation study," Ecological Modelling, Elsevier, vol. 214(2), pages 125-140.
  • Handle: RePEc:eee:ecomod:v:214:y:2008:i:2:p:125-140
    DOI: 10.1016/j.ecolmodel.2008.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008000525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    2. Charlotte K. Hemelrijk & Hanspeter Kunz, 2005. "Density distribution and size sorting in fish schools: an individual-based model," Behavioral Ecology, International Society for Behavioral Ecology, vol. 16(1), pages 178-187, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reuter, Hauke & Kruse, Maren & Rovellini, Alberto & Breckling, Broder, 2016. "Evolutionary trends in fish schools in heterogeneous environments," Ecological Modelling, Elsevier, vol. 326(C), pages 23-35.
    2. Yilun Shang, 2015. "Group consensus of multi-agent systems in directed networks with noises and time delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2481-2492, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viscido, Steven V. & Parrish, Julia K. & Grünbaum, Daniel, 2007. "Factors influencing the structure and maintenance of fish schools," Ecological Modelling, Elsevier, vol. 206(1), pages 153-165.
    2. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    3. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    4. Long-Hai Wang & Alexander Ulrich Ernst & Duo An & Ashim Kumar Datta & Boris Epel & Mrignayani Kotecha & Minglin Ma, 2021. "A bioinspired scaffold for rapid oxygenation of cell encapsulation systems," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Richard P Mann, 2011. "Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    6. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    7. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.
    8. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    9. Amos Korman & Efrat Greenwald & Ofer Feinerman, 2014. "Confidence Sharing: An Economic Strategy for Efficient Information Flows in Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-10, October.
    10. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    11. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Mathew Titus & George Hagstrom & James R Watson, 2021. "Unsupervised manifold learning of collective behavior," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-20, February.
    13. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    14. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    15. De Rosis, Alessandro, 2014. "Hydrodynamic effects on a predator approaching a group of preys," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 329-339.
    16. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    17. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    18. Li, Chenyang & Yang, Yonghui & Jiang, Guanjie & Chen, Xue-Bo, 2024. "Flocking for leader ability effect and formation obstacle avoidance of multi-agents based on different potential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    19. Huepe, Cristián & Aldana, Maximino, 2008. "New tools for characterizing swarming systems: A comparison of minimal models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2809-2822.
    20. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:214:y:2008:i:2:p:125-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.