IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003862.html
   My bibliography  Save this article

Confidence Sharing: An Economic Strategy for Efficient Information Flows in Animal Groups

Author

Listed:
  • Amos Korman
  • Efrat Greenwald
  • Ofer Feinerman

Abstract

Social animals may share information to obtain a more complete and accurate picture of their surroundings. However, physical constraints on communication limit the flow of information between interacting individuals in a way that can cause an accumulation of errors and deteriorated collective behaviors. Here, we theoretically study a general model of information sharing within animal groups. We take an algorithmic perspective to identify efficient communication schemes that are, nevertheless, economic in terms of communication, memory and individual internal computation. We present a simple and natural algorithm in which each agent compresses all information it has gathered into a single parameter that represents its confidence in its behavior. Confidence is communicated between agents by means of active signaling. We motivate this model by novel and existing empirical evidences for confidence sharing in animal groups. We rigorously show that this algorithm competes extremely well with the best possible algorithm that operates without any computational constraints. We also show that this algorithm is minimal, in the sense that further reduction in communication may significantly reduce performances. Our proofs rely on the Cramér-Rao bound and on our definition of a Fisher Channel Capacity. We use these concepts to quantify information flows within the group which are then used to obtain lower bounds on collective performance. The abstract nature of our model makes it rigorously solvable and its conclusions highly general. Indeed, our results suggest confidence sharing as a central notion in the context of animal communication.Author Summary: Cooperative groups are abundant on all scales of the biological world. Despite much empirical evidence on a wide variety of natural communication schemes, there is still a growing need for rigorous tools to quantify and understand the information flows involved. Here, we borrow techniques from information theory and theoretical distributed computing to study information sharing within animal groups. We consider a group of individuals that integrate personal and social information to obtain improved knowledge of their surroundings. We rigorously show that communication between such individuals can be compressed into simple messages that contain an opinion and a corresponding confidence parameter. While this algorithm is extremely efficient, further reduction in communication capacity may greatly hamper collective performances.

Suggested Citation

  • Amos Korman & Efrat Greenwald & Ofer Feinerman, 2014. "Confidence Sharing: An Economic Strategy for Efficient Information Flows in Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-10, October.
  • Handle: RePEc:plo:pcbi00:1003862
    DOI: 10.1371/journal.pcbi.1003862
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003862
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003862&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guillaume Rieucau & Luc-Alain Giraldeau, 2009. "Persuasive companions can be wrong: the use of misleading social information in nutmeg mannikins," Behavioral Ecology, International Society for Behavioral Ecology, vol. 20(6), pages 1217-1222.
    2. Jon M. Kleinberg, 2000. "Navigation in a small world," Nature, Nature, vol. 406(6798), pages 845-845, August.
    3. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    4. Elva J H Robinson & Nigel R Franks & Samuel Ellis & Saki Okuda & James A R Marshall, 2011. "A Simple Threshold Rule Is Sufficient to Explain Sophisticated Collective Decision-Making," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-11, May.
    5. Adi Shklarsh & Gil Ariel & Elad Schneidman & Eshel Ben-Jacob, 2011. "Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-11, September.
    6. Benjamin Blonder & Anna Dornhaus, 2011. "Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    2. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    3. Long-Hai Wang & Alexander Ulrich Ernst & Duo An & Ashim Kumar Datta & Boris Epel & Mrignayani Kotecha & Minglin Ma, 2021. "A bioinspired scaffold for rapid oxygenation of cell encapsulation systems," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Àlex Arenas & Antonio Cabrales & Leon Danon & Albert Díaz-Guilera & Roger Guimerà & Fernando Vega-Redondo, 2010. "Optimal information transmission in organizations: search and congestion," Review of Economic Design, Springer;Society for Economic Design, vol. 14(1), pages 75-93, March.
    5. Richard P Mann, 2011. "Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    6. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    7. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.
    8. Boris Salazar & María del Pilar Castillo, 2008. "Pobreza Urbana Y Exclusión Social De Los Desplazados," Documentos de Trabajo 4500, Universidad del Valle, CIDSE.
    9. Andrea Avena-Koenigsberger & Xiaoran Yan & Artemy Kolchinsky & Martijn P van den Heuvel & Patric Hagmann & Olaf Sporns, 2019. "A spectrum of routing strategies for brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    10. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    11. Douglas R. White & Jason Owen-Smith & James Moody & Walter W. Powell, 2004. "Networks, Fields and Organizations: Micro-Dynamics, Scale and Cohesive Embeddings," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 95-117, May.
    12. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    13. Cowan, Robin & Jonard, Nicolas & Sanditov, Bulat, 2009. "Fits and Misfits: Technological Matching and R&D Networks," MERIT Working Papers 2009-042, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    14. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    15. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    16. Shi, Xiaolin & Adamic, Lada A. & Strauss, Martin J., 2007. "Networks of strong ties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 33-47.
    17. Peter Biddle & Paul England & Marcus Peinado & Bryan Willman, 2003. "The Darknet and the Future of Content Distribution," Levine's Working Paper Archive 618897000000000636, David K. Levine.
    18. Mathew Titus & George Hagstrom & James R Watson, 2021. "Unsupervised manifold learning of collective behavior," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-20, February.
    19. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    20. Joost Berkhout & Bernd F. Heidergott, 2019. "Analysis of Markov Influence Graphs," Operations Research, INFORMS, vol. 67(3), pages 892-904, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.