IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v636y2024ics0378437124000591.html
   My bibliography  Save this article

Flocking for leader ability effect and formation obstacle avoidance of multi-agents based on different potential functions

Author

Listed:
  • Li, Chenyang
  • Yang, Yonghui
  • Jiang, Guanjie
  • Chen, Xue-Bo

Abstract

The potential function plays a significant role in influencing interactions among multi-agents during flocking. Most studies that adopt the potential function have primarily focused on attraction and repulsion, neglecting other critical properties, such as well depth. This paper investigates the flocking phenomenon effect when individuals have different social distances and different potential functions with different well depths. Then, two key conclusions are derived. Firstly, a positive correlation between the well depth of the potential function and the attraction observed among intra-group agents. Secondly, agents with smaller social distances will repel agents with larger social distances under the same potential function. Based on this analysis, we propose an integrated flocking algorithm in this paper, which combines different potential functions with flocking and anti-flocking algorithms. Sub-algorithm 1 is the leader ability algorithm. It enables agents to act as actual leader agents that affect other agents, with the ability of their affecting depending on the well depth and social distance. Sub-algorithm 2 is the self-organized formation of multi-level leader agents and obstacle avoidance algorithms. It enables multi-agents to form the desired formation shape through self-organization and maintain the formation's integrity while avoiding obstacles under the effect of the potential function well depth. Furthermore, the potential function model designed in this paper enhances the formation cohesion and reduces the time required to establish formation. Finally, we demonstrate the proposed algorithm's stability and convergence by applying the Lyapunov stability theorem. The corresponding simulation results are presented and effectively verify the effectiveness of the integrated flocking algorithm.

Suggested Citation

  • Li, Chenyang & Yang, Yonghui & Jiang, Guanjie & Chen, Xue-Bo, 2024. "Flocking for leader ability effect and formation obstacle avoidance of multi-agents based on different potential functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
  • Handle: RePEc:eee:phsmap:v:636:y:2024:i:c:s0378437124000591
    DOI: 10.1016/j.physa.2024.129551
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000591
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    2. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    3. Long-Hai Wang & Alexander Ulrich Ernst & Duo An & Ashim Kumar Datta & Boris Epel & Mrignayani Kotecha & Minglin Ma, 2021. "A bioinspired scaffold for rapid oxygenation of cell encapsulation systems," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Richard P Mann, 2011. "Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    5. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    6. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    7. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    9. De Rosis, Alessandro, 2014. "Hydrodynamic effects on a predator approaching a group of preys," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 329-339.
    10. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    11. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    12. Huepe, Cristián & Aldana, Maximino, 2008. "New tools for characterizing swarming systems: A comparison of minimal models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2809-2822.
    13. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Kim, Jong-Ho & Park, Jea-Hyun, 2022. "Clustering phenomenon of the singular Cucker–Smale model with finite communication weight and variable coupling strength," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    15. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    16. Mayuko Nakamaru & Akira Yokoyama, 2014. "The Effect of Ostracism and Optional Participation on the Evolution of Cooperation in the Voluntary Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    17. Eshel, Ilan & Sansone, Emilia & Shaked, Avner, 2011. "On the evolution of group-escape strategies of selfish prey," Theoretical Population Biology, Elsevier, vol. 80(2), pages 150-157.
    18. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    19. Cirillo, Emilio N.M. & Muntean, Adrian, 2013. "Dynamics of pedestrians in regions with no visibility— A lattice model without exclusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3578-3588.
    20. Yi Zou & Wenjie Zhan & Yuan Shao, 2014. "Evolution with Reinforcement Learning in Negotiation," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-7, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:636:y:2024:i:c:s0378437124000591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.