IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v199y2021ics0165176521000070.html
   My bibliography  Save this article

Can news help measure economic sentiment? An application in COVID-19 times

Author

Listed:
  • Aguilar, Pablo
  • Ghirelli, Corinna
  • Pacce, Matías
  • Urtasun, Alberto

Abstract

We construct a new newspaper-based sentiment indicator for Spain that allows to monitor economic activity in real-time. As opposed to survey-based confidence indicators that are released at the end of the month, our indicator can be constructed on a daily basis. We compare our index with the popular Economic Sentiment Indicator of the European Commission and show that ours performs significantly better in nowcasting the Spanish GDP. Moreover, it proves to be helpful to predict the current COVID-19 recession from an earlier date.

Suggested Citation

  • Aguilar, Pablo & Ghirelli, Corinna & Pacce, Matías & Urtasun, Alberto, 2021. "Can news help measure economic sentiment? An application in COVID-19 times," Economics Letters, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:ecolet:v:199:y:2021:i:c:s0165176521000070
    DOI: 10.1016/j.econlet.2021.109730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176521000070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2021.109730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021. "News and narratives in financial systems: Exploiting big data for systemic risk assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    2. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    3. Fontaine, Idriss & Didier, Laurent & Razafindravaosolonirina, Justinien, 2017. "Foreign policy uncertainty shocks and US macroeconomic activity: Evidence from China," Economics Letters, Elsevier, vol. 155(C), pages 121-125.
    4. Clément Bortoli & Stéphanie Combes & Thomas Renault, 2018. "Nowcasting GDP Growth by Reading the Newspapers," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 505-506, pages 17-33.
    5. Caggiano, Giovanni & Castelnuovo, Efrem & Figueres, Juan Manuel, 2017. "Economic policy uncertainty and unemployment in the United States: A nonlinear approach," Economics Letters, Elsevier, vol. 151(C), pages 31-34.
    6. Giannone, Domenico & Reichlin, Lucrezia & Simonelli, Saverio, 2009. "Nowcasting Euro Area Economic Activity in Real Time: The Role of Confidence Indicators," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210, pages 90-97, October.
    7. Leif Anders Thorsrud, 2020. "Words are the New Numbers: A Newsy Coincident Index of the Business Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
    8. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    9. Colombo, Valentina, 2013. "Economic policy uncertainty in the US: Does it matter for the Euro area?," Economics Letters, Elsevier, vol. 121(1), pages 39-42.
    10. Meinen, Philipp & Roehe, Oke, 2017. "On measuring uncertainty and its impact on investment: Cross-country evidence from the euro area," European Economic Review, Elsevier, vol. 92(C), pages 161-179.
    11. Ghirelli, Corinna & Pérez, Javier J. & Urtasun, Alberto, 2019. "A new economic policy uncertainty index for Spain," Economics Letters, Elsevier, vol. 182(C), pages 64-67.
    12. Christian Gayer & Bertrand Marc, 2018. "A ‘New Modesty’? Level Shifts in Survey Data and the Decreasing Trend of ‘Normal’ Growth," European Economy - Discussion Papers 083, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    13. Calomiris, Charles W. & Mamaysky, Harry, 2019. "How news and its context drive risk and returns around the world," Journal of Financial Economics, Elsevier, vol. 133(2), pages 299-336.
    14. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.
    15. Gajewski Paweł, 2014. "Nowcasting Quarterly GDP Dynamics in the Euro Area – The Role of Sentiment Indicators," Comparative Economic Research, Sciendo, vol. 17(2), pages 1-19, June.
    16. Francisco Alonso & Juan Ayuso & Jorge Martínez Pagés, 1997. "How Informative are Financial Asset Prices in Spain?," Working Papers 9726, Banco de España.
    17. Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, February.
    18. Jonathan H. Wright, 2006. "The yield curve and predicting recessions," Finance and Economics Discussion Series 2006-07, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deimante Teresiene & Greta Keliuotyte-Staniuleniene & Yiyi Liao & Rasa Kanapickiene & Ruihui Pu & Siyan Hu & Xiao-Guang Yue, 2021. "The Impact of the COVID-19 Pandemic on Consumer and Business Confidence Indicators," JRFM, MDPI, vol. 14(4), pages 1-23, April.
    2. Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
    3. Martin Baumgaertner & Johannes Zahner, 2021. "Whatever it takes to understand a central banker - Embedding their words using neural networks," MAGKS Papers on Economics 202130, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    4. Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
    5. Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Pérez & Elena Vidal, 2022. "Using newspapers for textual indicators: which and how many?," Working Papers 2235, Banco de España.
    6. Anastasiou, Dimitris & Ballis, Antonis & Drakos, Konstantinos, 2022. "Constructing a positive sentiment index for COVID-19: Evidence from G20 stock markets," International Review of Financial Analysis, Elsevier, vol. 81(C).
    7. Bondarenko, Yevheniia & Lewis, Vivien & Rottner, Matthias & Schüler, Yves, 2023. "Geopolitical Risk Perceptions," CEPR Discussion Papers 18123, C.E.P.R. Discussion Papers.
    8. Larissa Batrancea, 2021. "Empirical Evidence Regarding the Impact of Economic Growth and Inflation on Economic Sentiment and Household Consumption," JRFM, MDPI, vol. 14(7), pages 1-16, July.
    9. Massimo Baldini & Andrea Barigazzi, 2024. "Surnames in Local Newspapers and Social Mobility," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 174(3), pages 859-879, September.
    10. Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Perez & Elena Vidal, 2024. "Using Newspapers for Textual Indicators: Guidance Based on Spanish- and Portuguese-Speaking Countries," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 643-692, August.
    11. Luca Barbaglia & Sergio Consoli & Sebastiano Manzan, 2024. "Forecasting GDP in Europe with textual data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 338-355, March.
    12. Vu M. Ngo & Toan L. D. Huynh & Phuc V. Nguyen & Huan H. Nguyen, 2022. "Public sentiment towards economic sanctions in the Russia–Ukraine war," Scottish Journal of Political Economy, Scottish Economic Society, vol. 69(5), pages 564-573, November.
    13. Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
    14. Iustina Alina Boitan & Emilia Mioara Campeanu & Sanja Sever Malis, 2021. "Economic Sentiment Perceptions During COVID-19 Pandemic – A European Cross-Country Impact Assessment," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 23(Special15), pages 982-982, November.
    15. María del Pilar Cruz N. & Hugo Peralta V. & Juan Pablo Cova M., 2022. "Utilización de noticias de prensa como indicador de confianza económica en tiempo real," Working Papers Central Bank of Chile 938, Central Bank of Chile.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
    2. Aslam, Faheem & Zil-e-huma, & Bibi, Rashida & Ferreira, Paulo, 2022. "Cross-correlations between economic policy uncertainty and precious and industrial metals: A multifractal cross-correlation analysis," Resources Policy, Elsevier, vol. 75(C).
    3. Tosapol Apaitan & Pongsak Luangaram & Pym Manopimoke, 2022. "Uncertainty in an emerging market economy: evidence from Thailand," Empirical Economics, Springer, vol. 62(3), pages 933-989, March.
    4. Arigoni, Filippo & Lenarčič, Črt, 2023. "Foreign economic policy uncertainty shocks and real activity in the Euro area," MPRA Paper 120022, University Library of Munich, Germany.
    5. Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Pérez & Elena Vidal, 2022. "Using newspapers for textual indicators: which and how many?," Working Papers 2235, Banco de España.
    6. Shapiro, Adam Hale & Sudhof, Moritz & Wilson, Daniel J., 2022. "Measuring news sentiment," Journal of Econometrics, Elsevier, vol. 228(2), pages 221-243.
    7. Claveria, Oscar, 2022. "Global economic uncertainty and suicide: Worldwide evidence," Social Science & Medicine, Elsevier, vol. 305(C).
    8. Fontaine, Idriss & Razafindravaosolonirina, Justinien & Didier, Laurent, 2018. "Chinese policy uncertainty shocks and the world macroeconomy: Evidence from STVAR," China Economic Review, Elsevier, vol. 51(C), pages 1-19.
    9. Cho, Dooyeon & Kim, Husang, 2023. "Macroeconomic effects of uncertainty shocks: Evidence from Korea," Journal of Asian Economics, Elsevier, vol. 84(C).
    10. Eiji Ogawa & Pengfei Luo, 2024. "Macroeconomic effects of global policy and financial risks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 177-205, January.
    11. Corinna Ghirelli & María Gil & Javier J. Pérez & Alberto Urtasun, 2021. "Measuring economic and economic policy uncertainty and their macroeconomic effects: the case of Spain," Empirical Economics, Springer, vol. 60(2), pages 869-892, February.
    12. Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
    13. Schüler, Yves S., 2020. "The impact of uncertainty and certainty shocks," Discussion Papers 14/2020, Deutsche Bundesbank.
    14. Simionescu, Mihaela, 2022. "Econometrics of sentiments- sentometrics and machine learning: The improvement of inflation predictions in Romania using sentiment analysis," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    15. Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Perez & Elena Vidal, 2024. "Using Newspapers for Textual Indicators: Guidance Based on Spanish- and Portuguese-Speaking Countries," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 643-692, August.
    16. William Ginn, 2022. "Climate Disasters and the Macroeconomy: Does State-Dependence Matter? Evidence for the US," Economics of Disasters and Climate Change, Springer, vol. 6(1), pages 141-161, March.
    17. Arigoni, Filippo & Lenarčič, Črt, 2020. "The impact of trade policy uncertainty shocks on the Euro Area," MPRA Paper 100832, University Library of Munich, Germany.
    18. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    19. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    20. Morikawa, Masayuki, 2019. "Uncertainty over production forecasts: An empirical analysis using monthly quantitative survey data," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 163-179.

    More about this item

    Keywords

    Nowcasting; GDP; Recession; Real-time; Textual analysis; Sentiment indicators; Soft indicators;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:199:y:2021:i:c:s0165176521000070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.