IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v181y2014i2p77-91.html
   My bibliography  Save this article

A flexible parametric approach for estimating switching regime models and treatment effect parameters

Author

Listed:
  • Chen, Heng
  • Fan, Yanqin
  • Wu, Jisong

Abstract

In this paper, we propose a flexible, parametric class of switching regime models allowing for both skewed and fat-tailed outcome and selection errors. Specifically, we model the joint distribution of each outcome error and the selection error via a newly constructed class of multivariate distributions which we call generalized normal mean–variance mixture distributions. We extend Heckman’s two-step estimation procedure for the Gaussian switching regime model to the new class of models. When the distributions of the outcome errors are asymmetric, we show that an additional correction term accounting for skewness in the outcome error distribution (besides the analogue of the well known inverse mill’s ratio) needs to be included in the second step regression. We use the two-step estimators of parameters in the model to construct simple estimators of average treatment effects and establish their asymptotic properties. Simulation results confirm the importance of accounting for skewness in the outcome errors in estimating both model parameters and the average treatment effect and the treatment effect for the treated.

Suggested Citation

  • Chen, Heng & Fan, Yanqin & Wu, Jisong, 2014. "A flexible parametric approach for estimating switching regime models and treatment effect parameters," Journal of Econometrics, Elsevier, vol. 181(2), pages 77-91.
  • Handle: RePEc:eee:econom:v:181:y:2014:i:2:p:77-91
    DOI: 10.1016/j.jeconom.2013.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407614000906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2013.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhat, Chandra R. & Eluru, Naveen, 2009. "A copula-based approach to accommodate residential self-selection effects in travel behavior modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 749-765, August.
    2. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    3. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    4. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    5. Newey, Whitney K & Powell, James L & Walker, James R, 1990. "Semiparametric Estimation of Selection Models: Some Empirical Results," American Economic Review, American Economic Association, vol. 80(2), pages 324-328, May.
    6. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    7. Murray D. Smith, 2003. "Modelling sample selection using Archimedean copulas," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 99-123, June.
    8. Mingliang Li & Dale J. Poirier & Justin L. Tobias, 2004. "Do dropouts suffer from dropping out? Estimation and prediction of outcome gains in generalized selection models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 203-225.
    9. Donald W. K. Andrews & Marcia M. A. Schafgans, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 497-517.
    10. Heckman, James J. & Vytlacil, Edward J., 2000. "The relationship between treatment parameters within a latent variable framework," Economics Letters, Elsevier, vol. 66(1), pages 33-39, January.
    11. Heckman, James J & Honore, Bo E, 1990. "The Empirical Content of the Roy Model," Econometrica, Econometric Society, vol. 58(5), pages 1121-1149, September.
    12. Lung-Fei Lee, 1982. "Some Approaches to the Correction of Selectivity Bias," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 49(3), pages 355-372.
    13. Mencia, Javier F. & Sentana, Enrique, 2004. "Estimation and testing of dynamic models with generalised hyperbolic innovations," LSE Research Online Documents on Economics 24742, London School of Economics and Political Science, LSE Library.
    14. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    15. James Heckman & Justin L. Tobias & Edward Vytlacil, 2003. "Simple Estimators for Treatment Parameters in a Latent-Variable Framework," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 748-755, August.
    16. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 33-58.
    17. Javier Mencía & Enrique Sentana, 2012. "Distributional Tests in Multivariate Dynamic Models with Normal and Student-t Innovations," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 133-152, February.
    18. Murray D. Smith, 2005. "Using Copulas to Model Switching Regimes with an Application to Child Labour," The Economic Record, The Economic Society of Australia, vol. 81(s1), pages 47-57, August.
    19. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    20. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
    21. James Heckman, 1997. "Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 441-462.
    22. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    23. Zimmer, David M. & Trivedi, Pravin K., 2006. "Using Trivariate Copulas to Model Sample Selection and Treatment Effects: Application to Family Health Care Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 63-76, January.
    24. Chen, Songnian, 1999. "Distribution-free estimation of the random coefficient dummy endogenous variable model," Journal of Econometrics, Elsevier, vol. 91(1), pages 171-199, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuki Takara & Shingo Takagi, 2023. "An empirical approach to measure unobserved cultural relations using music trade data," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 47(2), pages 205-245, June.
    2. Yanqin Fan & Marc Henry, 2020. "Vector copulas," Papers 2009.06558, arXiv.org, revised Apr 2021.
    3. Fan, Yanqin & Henry, Marc, 2023. "Vector copulas," Journal of Econometrics, Elsevier, vol. 234(1), pages 128-150.
    4. Guo, Jing & Wang, Lei & Zhang, Zhengyu, 2022. "Identification and estimation of a heteroskedastic censored regression model with random coefficient dummy endogenous regressors," Economic Modelling, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    2. James Heckman & Justin L. Tobias & Edward Vytlacil, 2001. "Four Parameters of Interest in the Evaluation of Social Programs," Southern Economic Journal, John Wiley & Sons, vol. 68(2), pages 210-223, October.
    3. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    4. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    5. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    6. Mingliang Li & Dale J. Poirier & Justin L. Tobias, 2004. "Do dropouts suffer from dropping out? Estimation and prediction of outcome gains in generalized selection models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 203-225.
    7. Hasebe, Takuya & Vijverberg, Wim P., 2012. "A Flexible Sample Selection Model: A GTL-Copula Approach," IZA Discussion Papers 7003, Institute of Labor Economics (IZA).
    8. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    9. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    10. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.
    11. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2018_1702, CEMFI.
    12. Manuel Arellano & Stéphane Bonhomme, 2017. "Sample Selection in Quantile Regression: A Survey," Working Papers wp2017_1702, CEMFI.
    13. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    14. Bhat, Chandra R. & Eluru, Naveen, 2009. "A copula-based approach to accommodate residential self-selection effects in travel behavior modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 749-765, August.
    15. Claudia PIGINI, 2012. "Of Butterflies and Caterpillars: Bivariate Normality in the Sample Selection Model," Working Papers 377, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    16. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    17. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.
    18. Zamarro, Gema, 2010. "Accounting for heterogeneous returns in sequential schooling decisions," Journal of Econometrics, Elsevier, vol. 156(2), pages 260-276, June.
    19. Mogstad, Magne & Torgovitsky, Alexander & Walters, Christopher R., 2024. "Policy evaluation with multiple instrumental variables," Journal of Econometrics, Elsevier, vol. 243(1).
    20. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.

    More about this item

    Keywords

    EM algorithm; Generalized normal mean–variance mixture; Inverse-mills ratio; Skewness; Two-step estimation;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:181:y:2014:i:2:p:77-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.