IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v114y2012i3p353-357.html
   My bibliography  Save this article

On general periodic time-varying bilinear processes

Author

Listed:
  • Bibi, Abdelouahab
  • Lescheb, Ines

Abstract

We study in this note the class of bilinear processes with periodic time-varying coefficients. We give necessary and sufficient conditions ensuring the existence of strict and second order stationary solutions (in periodic sense) and for the existence of higher order moments. The given conditions can be applied to periodic ARMA or periodic GARCH models. The central limit theorem and the law of iterated logarithm (LIL) for higher order sample moments are showed.

Suggested Citation

  • Bibi, Abdelouahab & Lescheb, Ines, 2012. "On general periodic time-varying bilinear processes," Economics Letters, Elsevier, vol. 114(3), pages 353-357.
  • Handle: RePEc:eee:ecolet:v:114:y:2012:i:3:p:353-357
    DOI: 10.1016/j.econlet.2011.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176511004642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2011.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    2. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    3. Pham, Dinh Tuan, 1985. "Bilinear markovian representation and bilinear models," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 295-306, September.
    4. Aknouche, Abdelhakim & Guerbyenne, Hafida, 2009. "Periodic stationarity of random coefficient periodic autoregressions," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 990-996, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iqbal Owadally, 2014. "Tail risk in pension funds: an analysis using ARCH models and bilinear processes," Review of Quantitative Finance and Accounting, Springer, vol. 43(2), pages 301-331, August.
    2. Abdelhakim Aknouche & Nadia Rabehi, 2010. "On an independent and identically distributed mixture bilinear time‐series model," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 113-131, March.
    3. Ahmed Ghezal & Maddalena Cavicchioli & Imane Zemmouri, 2024. "On the existence of stationary threshold bilinear processes," Statistical Papers, Springer, vol. 65(6), pages 3739-3767, August.
    4. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    5. Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    6. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    7. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
    8. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    9. Phornchanok Cumperayot & Casper G. de Vries, 2006. "Large Swings in Currencies driven by Fundamentals," Tinbergen Institute Discussion Papers 06-086/2, Tinbergen Institute.
    10. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    11. Qing Yang & Yu-Ning Li & Yi Zhang, 2020. "Change point detection for nonparametric regression under strongly mixing process," Statistical Papers, Springer, vol. 61(4), pages 1465-1506, August.
    12. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    13. Janßen, Anja, 2019. "Spectral tail processes and max-stable approximations of multivariate regularly varying time series," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1993-2009.
    14. Oliver Kley & Claudia Kluppelberg, 2015. "Bounds for randomly shared risk of heavy-tailed loss factors," Papers 1503.03726, arXiv.org, revised Apr 2016.
    15. Oliver Kley & Claudia Kluppelberg & Gesine Reinert, 2014. "Risk in a large claims insurance market with bipartite graph structure," Papers 1410.8671, arXiv.org, revised Nov 2015.
    16. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    17. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    18. de Valk, Cees Fouad & Segers, Johan, 2018. "Stability and tail limits of transport-based quantile contours," LIDAM Discussion Papers ISBA 2018031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Martinez Oscar & Olmo Jose, 2012. "A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-39, September.
    20. Kley, Oliver & Klüppelberg, Claudia & Paterlini, Sandra, 2020. "Modelling extremal dependence for operational risk by a bipartite graph," Journal of Banking & Finance, Elsevier, vol. 117(C).

    More about this item

    Keywords

    Periodic models; Bilinear processes; Periodic bilinear processes;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:114:y:2012:i:3:p:353-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.