IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v201y2022ics0921800922002269.html
   My bibliography  Save this article

Does drought increase carbon emissions? Evidence from Southwestern China

Author

Listed:
  • Yang, Jie
  • Huang, Yijing
  • Takeuchi, Kenji

Abstract

The study estimates the impact of the 2009/2010 drought in southwestern China on industrial outcomes and carbon dioxide (CO2) emissions. We focus on the outputs of the power and energy-intensive sectors and investigate the substitution of thermal power for hydropower during this extreme drought. Panel data for 93,830 firms from 2006 to 2013 were used to examine their responses to this extreme climatic event. We find that severe drought reduced hydropower production as well as the economic output of energy-intensive sectors, while it increased the power production of thermal power firms. As a result, the net CO2 emissions in the southwest increased by 6,704,364 tons, about 0.64% increase of the total regional CO2 emissions each year from 2009 to 2013. These findings suggest that climate disasters may increase carbon emissions, thereby contributing to climate change.

Suggested Citation

  • Yang, Jie & Huang, Yijing & Takeuchi, Kenji, 2022. "Does drought increase carbon emissions? Evidence from Southwestern China," Ecological Economics, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:ecolec:v:201:y:2022:i:c:s0921800922002269
    DOI: 10.1016/j.ecolecon.2022.107564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800922002269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2022.107564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Liu, Zhu & Geng, Yong & Lindner, Soeren & Guan, Dabo, 2012. "Uncovering China’s greenhouse gas emission from regional and sectoral perspectives," Energy, Elsevier, vol. 45(1), pages 1059-1068.
    2. Zheng, Xinzhu & Wang, Can & Cai, Wenjia & Kummu, Matti & Varis, Olli, 2016. "The vulnerability of thermoelectric power generation to water scarcity in China: Current status and future scenarios for power planning and climate change," Applied Energy, Elsevier, vol. 171(C), pages 444-455.
    3. Fernando Miralles-Wilhelm, 2022. "Water is the middle child in global climate policy," Nature Climate Change, Nature, vol. 12(2), pages 110-112, February.
    4. Zhang, Peng & Deschenes, Olivier & Meng, Kyle & Zhang, Junjie, 2018. "Temperature effects on productivity and factor reallocation: Evidence from a half million chinese manufacturing plants," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 1-17.
    5. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    6. Koch, Hagen & Vögele, Stefan, 2009. "Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change," Ecological Economics, Elsevier, vol. 68(7), pages 2031-2039, May.
    7. Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Chen, Fu & Li, Weidong, 2018. "Hydropower curtailment in Yunnan Province, southwestern China: Constraint analysis and suggestions," Renewable Energy, Elsevier, vol. 121(C), pages 700-711.
    8. Yashobanta Parida & Devi Prasad Dash & Parul Bhardwaj & Joyita Roy Chowdhury, 2018. "Effects of Drought and Flood on Farmer Suicides in Indian States: An Empirical Analysis," Economics of Disasters and Climate Change, Springer, vol. 2(2), pages 159-180, July.
    9. Grant R. McDermott & Øivind A. Nilse, 2014. "Electricity Prices, River Temperatures, and Cooling Water Scarcity," Land Economics, University of Wisconsin Press, vol. 90(1), pages 131-148.
    10. Fisher-Vanden, Karen & Mansur, Erin T. & Wang, Qiong (Juliana), 2015. "Electricity shortages and firm productivity: Evidence from China's industrial firms," Journal of Development Economics, Elsevier, vol. 114(C), pages 172-188.
    11. Maximilian Kotz & Anders Levermann & Leonie Wenz, 2022. "The effect of rainfall changes on economic production," Nature, Nature, vol. 601(7892), pages 223-227, January.
    12. Ming, Zeng & Honglin, Li & Mingjuan, Ma & Na, Li & Song, Xue & Liang, Wang & Lilin, Peng, 2013. "Review on transaction status and relevant policies of southern route in China's West–East Power Transmission," Renewable Energy, Elsevier, vol. 60(C), pages 454-461.
    13. repec:hal:wpspec:info:hdl:2441/1qif9fqehq930ovnr511k1el4f is not listed on IDEAS
    14. Hunt Allcott & Allan Collard-Wexler & Stephen D. O'Connell, 2016. "How Do Electricity Shortages Affect Industry? Evidence from India," American Economic Review, American Economic Association, vol. 106(3), pages 587-624, March.
    15. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    16. Wang, Jinxia & Yang, Yu & Huang, Jikun & Chen, Kevin, 2015. "Information provision, policy support, and farmers’ adaptive responses against drought: An empirical study in the North China Plain," Ecological Modelling, Elsevier, vol. 318(C), pages 275-282.
    17. repec:hal:spmain:info:hdl:2441/1qif9fqehq930ovnr511k1el4f is not listed on IDEAS
    18. Shang, Yizi & Wang, Jianhua & Liu, Jiahong & Jiang, Dong & Zhai, Jiaqi & Jiang, Shan, 2016. "Suitability analysis of China's energy development strategy in the context of water resource management," Energy, Elsevier, vol. 96(C), pages 286-293.
    19. Chen, Xiaoguang & Yang, Lu, 2019. "Temperature and industrial output: Firm-level evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 257-274.
    20. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    21. Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "China's energy saving potential from the perspective of energy efficiency advantages of foreign-invested enterprises," Energy Economics, Elsevier, vol. 49(C), pages 104-112.
    22. Tan, Ruipeng & Lin, Boqiang, 2018. "What factors lead to the decline of energy intensity in China's energy intensive industries?," Energy Economics, Elsevier, vol. 71(C), pages 213-221.
    23. Cai, Hongbin & Chen, Yuyu & Gong, Qing, 2016. "Polluting thy neighbor: Unintended consequences of China׳s pollution reduction mandates," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 86-104.
    24. Gu, Alun & Teng, Fei & Lv, Zhiqiang, 2016. "Exploring the nexus between water saving and energy conservation: Insights from industry sector during the 12th Five-Year Plan period in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 28-38.
    25. Ran Zhang & Zabihollah Rezaee & Jigao Zhu, 2010. "Corporate Philanthropic Disaster Response and Ownership Type: Evidence from Chinese Firms’ Response to the Sichuan Earthquake," Journal of Business Ethics, Springer, vol. 91(1), pages 51-63, January.
    26. Eyer, Jonathan & Wichman, Casey J., 2018. "Does water scarcity shift the electricity generation mix toward fossil fuels? Empirical evidence from the United States," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 224-241.
    27. Michele Fioretti & Jorge Tamayo, 2021. "Saving for a Dry Day: Coal, Dams, and the Energy Transition," Working Papers hal-03389152, HAL.
    28. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    29. Lu Lin & Yongqin David Chen, 2017. "Evaluation of Future Water Use for Electricity Generation under Different Energy Development Scenarios in China," Sustainability, MDPI, vol. 10(1), pages 1-16, December.
    30. Wang, Zanxin & Wei, Wei, 2017. "External cost of photovoltaic oriented silicon production: A case in China," Energy Policy, Elsevier, vol. 107(C), pages 437-447.
    31. Lea Kosnik, 2010. "Balancing Environmental Protection and Energy Production in the Federal Hydropower Licensing Process," Land Economics, University of Wisconsin Press, vol. 86(3).
    32. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    33. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    34. Alauddin, Mohammad & Sarker, Md Abdur Rashid, 2014. "Climate change and farm-level adaptation decisions and strategies in drought-prone and groundwater-depleted areas of Bangladesh: an empirical investigation," Ecological Economics, Elsevier, vol. 106(C), pages 204-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Wenliang & Yang, Mian & Duan, Hongbo, 2023. "Temperature and corporate tax avoidance: Evidence from Chinese manufacturing firms," Energy Economics, Elsevier, vol. 117(C).
    2. Li Wang & Jie Pei & Jing Geng & Zheng Niu, 2019. "Tracking the Spatial–Temporal Evolution of Carbon Emissions in China from 1999 to 2015: A Land Use Perspective," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    3. Wu, Zhiyang & Zhou, Tao & Zhang, Ning & Choi, Yongrok & Kong, Fanbin, 2023. "A hidden risk in climate change: The effect of daily rainfall shocks on industrial activities," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 161-180.
    4. Huang, Yi & Li, Yanjun, 2023. "Labor activism over searing heat," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    5. Jiang, Lei & Yang, Yue & Wu, Qingyang & Yang, Linshuang & Yang, Zaoli, 2024. "Hotter days, dirtier air: The impact of extreme heat on energy and pollution intensity in China," Energy Economics, Elsevier, vol. 130(C).
    6. Xiao, Huijuan & Duan, Zhiyuan & Zhou, Ya & Zhang, Ning & Shan, Yuli & Lin, Xiyan & Liu, Guosheng, 2019. "CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Jimmy Karlsson, 2021. "Temperature and Exports: Evidence from the United States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(2), pages 311-337, October.
    8. Philippe Kabore & Nicholas Rivers, 2023. "Manufacturing output and extreme temperature: Evidence from Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(1), pages 191-224, February.
    9. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    10. Li Chen & Bin Jiang & Chuan Wang, 2023. "Climate change and urban total factor productivity: evidence from capital cities and municipalities in China," Empirical Economics, Springer, vol. 65(1), pages 401-441, July.
    11. Wang, Hai-jie & Tang, Kai, 2023. "Extreme climate, innovative ability and energy efficiency," Energy Economics, Elsevier, vol. 120(C).
    12. Gagliardi, Nicola & Grinza, Elena & Rycx, François, 2024. "The Productivity Impact of Global Warming: Firm-Level Evidence for Europe," GLO Discussion Paper Series 1485, Global Labor Organization (GLO).
    13. Yuan, Zhengrong & Ding, Hai & Yu, Qiuzuo, 2024. "High temperature, bargaining power and within-firm wage inequality: Evidence from China," Economic Modelling, Elsevier, vol. 135(C).
    14. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    15. Jaqueline Oliveira & Bruno Palialol & Paula Pereda, 2021. "Do temperature shocks affect non-agriculture wages in Brazil? Evidence from individual-level panel data," Working Papers, Department of Economics 2021_13, University of São Paulo (FEA-USP).
    16. Eduardo Cavallo & Bridget Hoffmann & Ilan Noy, 2023. "Disasters and Climate Change in Latin America and the Caribbean: An Introduction to the Special Issue," Economics of Disasters and Climate Change, Springer, vol. 7(2), pages 135-145, July.
    17. Chen, Xinming & Fang, Tong, 2024. "Temperature anomalies and foreign direct investment: City-level evidence from China," International Review of Financial Analysis, Elsevier, vol. 91(C).
    18. Naveen Kumar & Dibyendu Maiti, 2024. "The Dynamic Causal Impact of Climate Change on Economic Activity - A Disaggregated Panel Analysis of India," Working papers 345, Centre for Development Economics, Delhi School of Economics.
    19. Wei, Xiahai & Li, Jianan & Liu, Hongyou & Wan, Jiangtao, 2023. "Temperature and outdoor productivity: Evidence from professional soccer players," Journal of Asian Economics, Elsevier, vol. 87(C).
    20. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.

    More about this item

    Keywords

    Extreme drought; Power and energy-intensive sectors; Hydropower; Thermal power; CO2 emissions;
    All these keywords.

    JEL classification:

    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:201:y:2022:i:c:s0921800922002269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.