IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v96y2016icp286-293.html
   My bibliography  Save this article

Suitability analysis of China's energy development strategy in the context of water resource management

Author

Listed:
  • Shang, Yizi
  • Wang, Jianhua
  • Liu, Jiahong
  • Jiang, Dong
  • Zhai, Jiaqi
  • Jiang, Shan

Abstract

Coal is China's most important primary energy source, and is supporting the rapid economic growth going on there. However, the reverse geographical distribution of coal production and consumption results in a high cost of coal transportation and low efficiency of coal utilization. To ease the pressure on coal transportation, and to mitigate pollution in eastern coastal regions, China has kicked off a strategic west–east transfer of energy industries that requires the movement of coal power projects to the arid northwest regions. Under this strategic framework, the regulation is focused on “clean production”, “consumption reduction” and “reuse”, rather than conservation and protection of water resources. This study found that the northwest areas are unable to accommodate fully the planned scale of coal-fired power industry. Moreover, the subsidiary chemical industry, even if the scale of electric power development is determined according to the need for coal production, is problematic because the current water demand for the coal industry has exceeded “allowed water withdrawal”. Given limited water saving potential and the huge demand-and-supply gap, it is also unrealistic to balance water demand by combination of water conservation in the power industry and water right diversion from agriculture. This study on the synergies between energy and water is urgently needed, in order to provide scientific and technological support for laying out new energy industries. A critical change should involve conciliation of conflicting policies or plans before implementation begins.

Suggested Citation

  • Shang, Yizi & Wang, Jianhua & Liu, Jiahong & Jiang, Dong & Zhai, Jiaqi & Jiang, Shan, 2016. "Suitability analysis of China's energy development strategy in the context of water resource management," Energy, Elsevier, vol. 96(C), pages 286-293.
  • Handle: RePEc:eee:energy:v:96:y:2016:i:c:p:286-293
    DOI: 10.1016/j.energy.2015.12.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215017247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Shahbaz & Hanjra, Munir A. & Mu, Jianxin, 2009. "Water management and crop production for food security in China: A review," Agricultural Water Management, Elsevier, vol. 96(3), pages 349-360, March.
    2. Lin, Bo-qiang & Liu, Jiang-hua, 2010. "Estimating coal production peak and trends of coal imports in China," Energy Policy, Elsevier, vol. 38(1), pages 512-519, January.
    3. Pan, Lingying & Liu, Pei & Ma, Linwei & Li, Zheng, 2012. "A supply chain based assessment of water issues in the coal industry in China," Energy Policy, Elsevier, vol. 48(C), pages 93-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Xuerui & Zhao, Yong & Lu, Shibao & Chen, Qianyun & An, Tingli & Han, Xinxueqi & Zhuo, La, 2019. "Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China," Applied Energy, Elsevier, vol. 250(C), pages 821-833.
    2. Yang, Jie & Huang, Yijing & Takeuchi, Kenji, 2022. "Does drought increase carbon emissions? Evidence from Southwestern China," Ecological Economics, Elsevier, vol. 201(C).
    3. Feng, Cuiyang & Tang, Xu & Jin, Yi & Guo, Yuhua & Zhang, Xiaochuan, 2019. "Regional energy-water nexus based on structural path betweenness: A case study of Shanxi Province, China," Energy Policy, Elsevier, vol. 127(C), pages 102-112.
    4. Xiling Zhang & Yusheng Kong & Xuhui Ding, 2020. "How High-Quality Urbanization Affects Utilization Efficiency of Agricultural Water Resources in the Yellow River Basin under Double Control Action?," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    5. Xuebing Yao & Xu Tang & Arash Farnoosh & Cuiyang Feng, 2021. "Quantifying virtual water scarcity risk transfers of energy system in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 945-969, October.
    6. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    7. Shang, Yizi & Lu, Shibao & Shang, Ling & Li, Xiaofei & Shi, Hongwang & Li, Wei, 2017. "Decomposition of industrial water use from 2003 to 2012 in Tianjin, China," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 53-61.
    8. Zhu, Mingjuan & Liu, Yudong & Wu, Xiao & Shen, Jiong, 2023. "Dynamic modeling and comprehensive analysis of direct air-cooling coal-fired power plant integrated with carbon capture for reliable, economic and flexible operation," Energy, Elsevier, vol. 263(PA).
    9. Shang, Yizi & Lu, Shibao & Li, Xiaofei & Hei, Pengfei & Lei, Xiaohui & Gong, Jiaguo & Liu, Jiahong & Zhai, Jiaqi & Wang, Hao, 2017. "Balancing development of major coal bases with available water resources in China through 2020," Applied Energy, Elsevier, vol. 194(C), pages 735-750.
    10. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhang, Jingwen, 2019. "Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation," Energy, Elsevier, vol. 179(C), pages 268-279.
    11. Kontos, Y.N. & Katsifarakis, K.L., 2017. "Optimal management of a theoretical coastal aquifer with combined pollution and salinization problems, using genetic algorithms," Energy, Elsevier, vol. 136(C), pages 32-44.
    12. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    13. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    2. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    3. Wang, Chengjin & Ducruet, César, 2014. "Transport corridors and regional balance in China: the case of coal trade and logistics," Journal of Transport Geography, Elsevier, vol. 40(C), pages 3-16.
    4. Yuqi Su & Yi Liang & Li Chai & Zixuan Han & Sai Ma & Jiaxuan Lyu & Zhiping Li & Liu Yang, 2019. "Water Degradation by China’s Fossil Fuels Production: A Life Cycle Assessment Based on an Input–Output Model," Sustainability, MDPI, vol. 11(15), pages 1-12, July.
    5. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    6. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    7. Liu, Yu & Guo, Lei & Huang, Ze & López-Vicente, Manuel & Wu, Gao-Lin, 2020. "Root morphological characteristics and soil water infiltration capacity in semi-arid artificial grassland soils," Agricultural Water Management, Elsevier, vol. 235(C).
    8. Kahrl, Fredrich & Williams, Jim & Jianhua, Ding & Junfeng, Hu, 2011. "Challenges to China's transition to a low carbon electricity system," Energy Policy, Elsevier, vol. 39(7), pages 4032-4041, July.
    9. repec:ajn:agdeve:2017:p:1-12 is not listed on IDEAS
    10. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    11. Wang, Qiang & Song, Xiaoxin, 2021. "How UK farewell to coal – Insight from multi-regional input-output and logarithmic mean divisia index analysis," Energy, Elsevier, vol. 229(C).
    12. Lin, Boqiang & Liu, Jianghua & Yang, Yingchun, 2012. "Impact of carbon intensity and energy security constraints on China's coal import," Energy Policy, Elsevier, vol. 48(C), pages 137-147.
    13. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    14. Erhu Bai & Xueyi Li & Wenbing Guo & Yi Tan & Mingjie Guo & Peng Wen & Zhibao Ma, 2022. "Characteristics and Formation Mechanism of Surface Residual Deformation above Longwall Abandoned Goaf," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    15. Tang, Erzi & Peng, Chong, 2017. "A macro- and microeconomic analysis of coal production in China," Resources Policy, Elsevier, vol. 51(C), pages 234-242.
    16. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    17. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    18. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    19. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    20. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    21. Dmitry Alexandrovich Izotov, 2012. "Russian – Chinese Trade and Exchange Rate," Spatial Economics=Prostranstvennaya Ekonomika, Economic Research Institute, Far Eastern Branch, Russian Academy of Sciences (Khabarovsk, Russia), issue 3, pages 34-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:96:y:2016:i:c:p:286-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.