IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v63y2022ics106294082200170x.html
   My bibliography  Save this article

Cross-sectional quantile regression for estimating conditional VaR of returns during periods of high volatility

Author

Listed:
  • Vidal-Llana, Xenxo
  • Guillén, Montserrat

Abstract

Evaluating value at risk (VaR) for a firm’s returns during periods of financial turmoil is a challenging task because of the high volatility in the market. We propose estimating conditional VaR and expected shortfall (ES) for a given firm’s returns using quantile regression with cross-sectional (CSQR) data about other firms operating in the same market. An evaluation using US market data between 2000 and 2020 shows that our approach has certain advantages over a CAViaR model. Identification of low-risk firms and a reduction in computing times are additional advantages of the new method described.

Suggested Citation

  • Vidal-Llana, Xenxo & Guillén, Montserrat, 2022. "Cross-sectional quantile regression for estimating conditional VaR of returns during periods of high volatility," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
  • Handle: RePEc:eee:ecofin:v:63:y:2022:i:c:s106294082200170x
    DOI: 10.1016/j.najef.2022.101835
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S106294082200170X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2022.101835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    2. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    3. Roger Koenker, 2017. "Quantile Regression: 40 Years On," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 155-176, September.
    4. Chen, Yi-Ling & Wang, Ming-Chun & Lin, Jun-Biao & Huang, Ming-Chih, 2022. "How financial crises affect the relationship between idiosyncratic volatility and stock returns," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 96-113.
    5. Ang, Andrew & Hodrick, Robert J. & Xing, Yuhang & Zhang, Xiaoyan, 2009. "High idiosyncratic volatility and low returns: International and further U.S. evidence," Journal of Financial Economics, Elsevier, vol. 91(1), pages 1-23, January.
    6. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    8. Vassilios Babalos & Guglielmo Maria Caporale & Nicola Spagnolo, 2021. "Equity fund flows and stock market returns in the USA before and after the global financial crisis: a VAR-GARCH-in-mean analysis," Empirical Economics, Springer, vol. 60(2), pages 539-555, February.
    9. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    10. Sahamkhadam, Maziar & Stephan, Andreas & Östermark, Ralf, 2018. "Portfolio optimization based on GARCH-EVT-Copula forecasting models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 497-506.
    11. Eugene F Fama & Kenneth R French, 2020. "Comparing Cross-Section and Time-Series Factor Models," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1891-1926.
    12. Eugene F Fama & Kenneth R French & Andrew KarolyiEditor, 2020. "Comparing Cross-Section and Time-Series Factor Models," Review of Finance, European Finance Association, vol. 33(5), pages 1891-1926.
    13. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    14. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    15. Yuzhi Cai & Julian Stander, 2020. "The Threshold GARCH Model: Estimation and Density Forecasting for Financial Returns," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 395-424.
    16. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    17. Andrew Y. Chen & Tom Zimmermann, 2022. "Open Source Cross-Sectional Asset Pricing," Critical Finance Review, now publishers, vol. 11(2), pages 207-264, May.
    18. Fateh Belaid & Amine Ben Amar & Stéphane Goutte & Khaled Guesmi, 2023. "Emerging and advanced economies markets behaviour during the COVID‐19 crisis era," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1563-1581, April.
    19. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    20. Dias, Alexandra, 2016. "The economic value of controlling for large losses in portfolio selection," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 81-91.
    21. Gordon M. Bodnar & Gregory S. Hayt & Richard C. Marston, 1998. "1998 Wharton Survey of Financial Risk Management by US Non-Financial Firms," Financial Management, Financial Management Association, vol. 27(4), Winter.
    22. Edward M. H. Lin & Edward W. Sun & Min-Teh Yu, 2018. "Systemic risk, financial markets, and performance of financial institutions," Annals of Operations Research, Springer, vol. 262(2), pages 579-603, March.
    23. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    24. Wang, Jying-Nan & Du, Jiangze & Hsu, Yuan-Teng, 2018. "Measuring long-term tail risk: Evaluating the performance of the square-root-of-time rule," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 120-138.
    25. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
    26. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    27. Antonios K. Alexandridis & Mohammad S. Hasan, 2020. "Global financial crisis and multiscale systematic risk: Evidence from selected European stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(4), pages 518-546, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wesam M. A. Hamed & Nesrin Özataç, 2024. "Spillover effects of financial development on renewable energy deployment and carbon neutrality: Does GCC institutional quality play a moderating role?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 27351-27374, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xenxo Vidal-Llana & Carlos Salort Sánchez & Vincenzo Coia & Montserrat Guillen, 2022. ""Non-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with non-crossing conditions"," IREA Working Papers 202215, University of Barcelona, Research Institute of Applied Economics, revised Oct 2022.
    2. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    3. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    4. Chong-Chuo Chang & Oshamah Lin Lin & Oshamah Yu-Cheng Chang & Oshamah Kun-Zhan Hsu, 2023. "Impact of Financial Liberalization on Firm Risk," Advances in Decision Sciences, Asia University, Taiwan, vol. 27(3), pages 14-45, September.
    5. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    6. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
    7. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    8. Rita Pimentel & Morten Risstad & Sjur Westgaard, 2022. "Predicting interest rate distributions using PCA & quantile regression," Digital Finance, Springer, vol. 4(4), pages 291-311, December.
    9. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    10. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    11. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    12. Nath, Harmindar B. & Brooks, Robert D., 2015. "Assessing the idiosyncratic risk and stock returns relation in heteroskedasticity corrected predictive models using quantile regression," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 94-111.
    13. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    14. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2023. "Forecasting extreme financial risk: A score-driven approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 720-735.
    15. Xiaochun Meng & James W. Taylor & Souhaib Ben Taieb & Siran Li, 2020. "Scores for Multivariate Distributions and Level Sets," Papers 2002.09578, arXiv.org, revised Jun 2023.
    16. Yingying Jiang & Fuming Lin & Yong Zhou, 2021. "The kth power expectile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 83-113, February.
    17. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
    18. Hammadi Zouari, 2022. "On the Effectiveness of Stock Index Futures for Tail Risk Protection," International Journal of Economics and Financial Issues, Econjournals, vol. 12(3), pages 38-52, May.
    19. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    20. Yannick Hoga & Matei Demetrescu, 2023. "Monitoring Value-at-Risk and Expected Shortfall Forecasts," Management Science, INFORMS, vol. 69(5), pages 2954-2971, May.

    More about this item

    Keywords

    Extreme values; Expected shortfall; Asset pricing; Risk management;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:63:y:2022:i:c:s106294082200170x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.