IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i5p720-726.html
   My bibliography  Save this article

Chaotic SVD method for minimizing the effect of exponential trends in detrended fluctuation analysis

Author

Listed:
  • Shang, Pengjian
  • Lin, Aijing
  • Liu, Liang

Abstract

The Detrended Fluctuation Analysis (DFA) and its extensions (MF-DFA) have been used extensively to determine possible long-range correlations in self-affine signals. However, recent studies have reported the susceptibility of DFA to trends which give rise to spurious crossovers and prevent reliable estimation of the scaling exponents. In this study, a smoothing algorithm based on the Chaotic Singular-Value Decomposition (CSVD) is proposed to minimize the effect of exponential trends and distortion in the log–log plots obtained by DFA techniques. The effectiveness of the technique is demonstrated on monofractal and multifractal data corrupted with exponential trends.

Suggested Citation

  • Shang, Pengjian & Lin, Aijing & Liu, Liang, 2009. "Chaotic SVD method for minimizing the effect of exponential trends in detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 720-726.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:5:p:720-726
    DOI: 10.1016/j.physa.2008.10.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108008959
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.10.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi Zhang & Zhengning Pu & Qin Zhou, 2018. "Sustainable Energy Consumption in Northeast Asia: A Case from China’s Fuel Oil Futures Market," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    2. Lucheng Hong & Wantao Shu & Angela C. Chao, 2018. "Recurrence Interval Analysis on Electricity Consumption of an Office Building in China," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    3. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing & Chen, Gang, 2011. "Multifractal Fourier detrended cross-correlation analysis of traffic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3670-3678.
    4. Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014. "Testing the weak-form efficiency of the WTI crude oil futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
    5. Yin, Yi & Shang, Pengjian & Ahn, Andrew C. & Peng, Chung-Kang, 2019. "Multiscale joint permutation entropy for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 388-402.
    6. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
    7. Jiang, Chenguang & Shang, Pengjian & Shi, Wenbin, 2016. "Multiscale multifractal time irreversibility analysis of stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 492-507.
    8. Li, Hongtao & Gedikli, Ersegun Deniz & Lubbad, Raed, 2020. "Exploring time-delay-based numerical differentiation using principal component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    9. Yang, Yujun & Li, Jianping & Yang, Yimei, 2017. "The cross-correlation analysis of multi property of stock markets based on MM-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 23-33.
    10. Zhao, Xiaojun & Shang, Pengjian & Zhao, Chuang & Wang, Jing & Tao, Rui, 2012. "Minimizing the trend effect on detrended cross-correlation analysis with empirical mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 166-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:5:p:720-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.