IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v330y2003i1p1-7.html
   My bibliography  Save this article

The effect of long-term correlations on the return periods of rare events

Author

Listed:
  • Bunde, Armin
  • F. Eichner, Jan
  • Havlin, Shlomo
  • Kantelhardt, Jan W.

Abstract

The basic assumption of common extreme value statistics is that different events in a time record are uncorrelated. In this case, the return intervals rq of events above a given threshold size q are uncorrelated and follow the Poisson distribution. In recent years there is growing evidence that several hydro-meteorological and physiological records of interest (e.g. river flows, temperatures, heartbeat intervals) exhibit long-term correlations where the autocorrelation function decays as Cx(s)∼s−γ, with γ between 0 and 1. Here we study how the presence of long-term correlations changes the statistics of the return intervals rq. We find that (a) the mean return intervals Rq=〈rq〉 are independent of γ, (b) the distribution of the rq follows a stretched exponential, lnPq(r)∼−(r/Rq)γ, and (c) the return intervals are long-term correlated with an exponent γ′ close to γ.

Suggested Citation

  • Bunde, Armin & F. Eichner, Jan & Havlin, Shlomo & Kantelhardt, Jan W., 2003. "The effect of long-term correlations on the return periods of rare events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 1-7.
  • Handle: RePEc:eee:phsmap:v:330:y:2003:i:1:p:1-7
    DOI: 10.1016/j.physa.2003.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103006745
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2003.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pushpa Dissanayake & Teresa Flock & Johanna Meier & Philipp Sibbertsen, 2021. "Modelling Short- and Long-Term Dependencies of Clustered High-Threshold Exceedances in Significant Wave Heights," Mathematics, MDPI, vol. 9(21), pages 1-33, November.
    2. M. Ghil & Pascal Yiou & Stéphane Hallegatte & B. D. Malamud & P. Naveau & A. Soloviev & P. Friederichs & V. Keilis-Borok & D. Kondrashov & V. Kossobokov & O. Mestre & C. Nicolis & H. W. Rust & P. Sheb, 2011. "Extreme events: dynamics, statistics and prediction," Post-Print hal-00716514, HAL.
    3. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    4. Czechowski, Zbigniew & Telesca, Luciano, 2024. "Effect of nonlinearity of discrete Langevin model on behavior of extremes in generated time series," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. Ren, Fei & Guo, Liang & Zhou, Wei-Xing, 2009. "Statistical properties of volatility return intervals of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 881-890.
    6. Picoli, Sergio & Bombo, Giorgio & Santos, Edenize S.D. & Deprá, Pedro P. & Mendes, Renio S., 2022. "Characterizing postural sway signals by the analysis of zero-crossing patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    7. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
    8. Livina, V. & Tuzov, S. & Havlin, S. & Bunde, A., 2005. "Recurrence intervals between earthquakes strongly depend on history," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 591-595.
    9. Karain, Wael I., 2019. "Investigating large-amplitude protein loop motions as extreme events using recurrence interval analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:330:y:2003:i:1:p:1-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.