IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v130y2024ics0264999323003966.html
   My bibliography  Save this article

Dynamic dependence of futures basis between the Chinese and international grains markets

Author

Listed:
  • Wang, Hao
  • Dong, Yizhe
  • Sun, Mingli
  • Shi, Baofeng
  • Ji, Hao

Abstract

Basis trading has emerged as a prominent trading strategy in the global grains markets. Understanding basis trading dynamics in this context requires an investigation of the interrelationships among futures basis values across different markets. Using data of corn and wheat over the period 2012–2022, we investigate the high-dimensional linkages of basis at various frequencies between the Chinese and international grains markets. We find a strong positive dynamic correlation between the basis of grains in international markets. However, the basis of Chinese corn (and wheat) exhibits weaker positive correlations with their international counterparts. Our further exploration uncovers temporal variations in the multi-dimensional interdependence structures among these basis values, with the international corn consistently occupying a pivotal central position. Given China's preeminent status as a grain importer, the implications of our study extend to the realm of adept risk management in the context of global grain trading amid an uncertain world.

Suggested Citation

  • Wang, Hao & Dong, Yizhe & Sun, Mingli & Shi, Baofeng & Ji, Hao, 2024. "Dynamic dependence of futures basis between the Chinese and international grains markets," Economic Modelling, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:ecmode:v:130:y:2024:i:c:s0264999323003966
    DOI: 10.1016/j.econmod.2023.106584
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999323003966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2023.106584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David S. Jacks & Kevin H. O'Rourke & Jeffrey G. Williamson, 2011. "Commodity Price Volatility and World Market Integration since 1700," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 800-813, August.
    2. Smales, L.A., 2017. "Commodity market volatility in the presence of U.S. and Chinese macroeconomic news," Journal of Commodity Markets, Elsevier, vol. 7(C), pages 15-27.
    3. Ji, Hao & Wang, Hao & Zhong, Rui & Li, Min, 2020. "China's liberalizing stock market, crude oil, and safe-haven assets: A linkage study based on a novel multivariate wavelet-vine copula approach," Economic Modelling, Elsevier, vol. 93(C), pages 187-204.
    4. Matthias Fischer & Christian Kock & Stephan Schluter & Florian Weigert, 2009. "An empirical analysis of multivariate copula models," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 839-854.
    5. Westerhoff, Frank & Reitz, Stefan, 2005. "Commodity price dynamics and the nonlinear market impact of technical traders: empirical evidence for the US corn market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 641-648.
    6. Brian H. Boyer & Tomomi Kumagai & Kathy Yuan, 2006. "How Do Crises Spread? Evidence from Accessible and Inaccessible Stock Indices," Journal of Finance, American Finance Association, vol. 61(2), pages 957-1003, April.
    7. Gallegati, Marco, 2012. "A wavelet-based approach to test for financial market contagion," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3491-3497.
    8. Mensi, Walid & Beljid, Makram & Boubaker, Adel & Managi, Shunsuke, 2013. "Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold," Economic Modelling, Elsevier, vol. 32(C), pages 15-22.
    9. Kjersti Aas & Daniel Berg, 2009. "Models for construction of multivariate dependence - a comparison study," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 639-659.
    10. Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).
    11. Antonakakis, Nikolaos & Kizys, Renatas, 2015. "Dynamic spillovers between commodity and currency markets," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 303-319.
    12. Bakas, Dimitrios & Triantafyllou, Athanasios, 2020. "Commodity price volatility and the economic uncertainty of pandemics," Economics Letters, Elsevier, vol. 193(C).
    13. Sensoy, Ahmet & Hacihasanoglu, Erk & Nguyen, Duc Khuong, 2015. "Dynamic convergence of commodity futures: Not all types of commodities are alike," Resources Policy, Elsevier, vol. 44(C), pages 150-160.
    14. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    15. Moosa Yousuf & Jia Zhai, 2022. "The financial interconnectedness between global equity markets and crude oil: evidence from the GCC," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 20(2), pages 183-206, April.
    16. Beckmann, Joscha & Czudaj, Robert, 2014. "Volatility transmission in agricultural futures markets," Economic Modelling, Elsevier, vol. 36(C), pages 541-546.
    17. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    18. Gençay, Ramazan & Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon J., 2001. "An Introduction to Wavelets and Other Filtering Methods in Finance and Economics," Elsevier Monographs, Elsevier, edition 1, number 9780122796708.
    19. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    20. Yahya, Muhammad & Oglend, Atle & Dahl, Roy Endré, 2019. "Temporal and spectral dependence between crude oil and agricultural commodities: A wavelet-based copula approach," Energy Economics, Elsevier, vol. 80(C), pages 277-296.
    21. Lyu, Yongjian & Yi, Heling & Hu, Yingyi & Yang, Mo, 2021. "Economic uncertainty shocks and China's commodity futures returns: A time-varying perspective," Resources Policy, Elsevier, vol. 70(C).
    22. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    23. Bailey, Warren & Chang, K C, 1993. "Macroeconomic Influences and the Variability of the Commodity Futures Basis," Journal of Finance, American Finance Association, vol. 48(2), pages 555-573, June.
    24. Ulf Schepsmeier, 2019. "A goodness-of-fit test for regular vine copula models," Econometric Reviews, Taylor & Francis Journals, vol. 38(1), pages 25-46, January.
    25. Xinhui Zhou & Yuzhe Li & Bing Chen & Huadong Jiang, 2023. "Research on spillover effect of foreign market risk on Chinese capital market from perspective of full financial opening-up," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(4), pages 517-538, October.
    26. Wang, Tian & Wang, Cangfeng, 2019. "The spillover effects of China's industrial growth on price changes of base metal," Resources Policy, Elsevier, vol. 61(C), pages 375-384.
    27. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    28. Hamadi, Hassan & Bassil, Charbel & Nehme, Tamara, 2017. "News surprises and volatility spillover among agricultural commodities: The case of corn, wheat, soybean and soybean oil," Research in International Business and Finance, Elsevier, vol. 41(C), pages 148-157.
    29. Karabulut, Gokhan & Bilgin, Mehmet Huseyin & Doker, Asli Cansin, 2020. "The relationship between commodity prices and world trade uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 276-281.
    30. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    31. Feng Zhao & Pingping Sun & Jie Zhang & Daqing Gong, 2021. "Modeling the Grain Import Trade: A Cointegration Analysis of China’s Panel Data," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-17, October.
    32. Karanasos, Menelaos & Menla Ali, Faek & Margaronis, Zannis & Nath, Rajat, 2018. "Modelling time varying volatility spillovers and conditional correlations across commodity metal futures," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 246-256.
    33. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh & Kang, Sang Hoon, 2020. "Do Islamic stocks outperform conventional stock sectors during normal and crisis periods? Extreme co-movements and portfolio management analysis," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    34. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    35. Mensi, Walid & Tiwari, Aviral & Bouri, Elie & Roubaud, David & Al-Yahyaee, Khamis H., 2017. "The dependence structure across oil, wheat, and corn: A wavelet-based copula approach using implied volatility indexes," Energy Economics, Elsevier, vol. 66(C), pages 122-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan-Hong Yang & Ying-Hui Shao & Wei-Xing Zhou, 2024. "Quantile connectedness across BRICS and international grain futures markets: Insights from the Russia-Ukraine conflict," Papers 2409.19307, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    2. Naeem, Muhammad Abubakr & Hasan, Mudassar & Arif, Muhammad & Suleman, Muhammad Tahir & Kang, Sang Hoon, 2022. "Oil and gold as a hedge and safe-haven for metals and agricultural commodities with portfolio implications," Energy Economics, Elsevier, vol. 105(C).
    3. Ji, Hao & Wang, Hao & Zhong, Rui & Li, Min, 2020. "China's liberalizing stock market, crude oil, and safe-haven assets: A linkage study based on a novel multivariate wavelet-vine copula approach," Economic Modelling, Elsevier, vol. 93(C), pages 187-204.
    4. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    5. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    6. Yahya, Muhammad & Oglend, Atle & Dahl, Roy Endré, 2019. "Temporal and spectral dependence between crude oil and agricultural commodities: A wavelet-based copula approach," Energy Economics, Elsevier, vol. 80(C), pages 277-296.
    7. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).
    8. Claudiu Albulescu & Aviral Tiwari & Qiang Ji, 2020. "Copula-based local dependence between energy, agriculture and metal commodity markets," Papers 2003.04007, arXiv.org.
    9. Mehmet Balcilar & Ojonugwa Usman & Busra Agan, 2024. "On the connectedness of commodity markets: A critical and selective survey of empirical studies and bibliometric analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 38(1), pages 97-136, February.
    10. Mbarki, Imen & Khan, Muhammad Arif & Karim, Sitara & Paltrinieri, Andrea & Lucey, Brian M., 2023. "Unveiling commodities-financial markets intersections from a bibliometric perspective," Resources Policy, Elsevier, vol. 83(C).
    11. Kang, Sang Hoon & Maitra, Debasish & Dash, Saumya Ranjan & Brooks, Robert, 2019. "Dynamic spillovers and connectedness between stock, commodities, bonds, and VIX markets," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
    12. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    13. Mensi, Walid & Al Rababa'a, Abdel Razzaq & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets," Energy Economics, Elsevier, vol. 98(C).
    14. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    15. Hemei Li & Zhenya Liu & Shixuan Wang, 2022. "Vines climbing higher: Risk management for commodity futures markets using a regular vine copula approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2438-2457, April.
    16. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    17. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    18. Eissa, Mohamad Abdelaziz & Al Refai, Hisham, 2019. "Modelling the symmetric and asymmetric relationships between oil prices and those of corn, barley, and rapeseed oil," Resources Policy, Elsevier, vol. 64(C).
    19. Tiwari, Aviral Kumar & Khalfaoui, Rabeh & Solarin, Sakiru Adebola & Shahbaz, Muhammad, 2018. "Analyzing the time-frequency lead–lag relationship between oil and agricultural commodities," Energy Economics, Elsevier, vol. 76(C), pages 470-494.
    20. Henry Leung & Frank Furfaro, 2020. "Comovement of dairy product futures and firm value: returns and volatility," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 632-654, July.

    More about this item

    Keywords

    Grain market; Futures basis; Dynamic linkage; Multidimensional dependence; DCC-GARCH model; Wavelet-vine copula;
    All these keywords.

    JEL classification:

    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:130:y:2024:i:c:s0264999323003966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.