IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v80y2023icp1445-1458.html
   My bibliography  Save this article

Evaluation of technology innovation efficiency for the listed NEV enterprises in China

Author

Listed:
  • Zhang, Tinglong
  • Li, Sasa
  • Li, Yifan
  • Wang, Weizhong

Abstract

China’s New Energy Vehicle (NEV) industry has entered an accelerated development stage, with the technology innovation efficiency becoming an essential factor affecting the speed of its development. Therefore, to explore ways to improve the efficiency of technology innovation, this paper divides the technology innovation process into two stages: the research and development (R&D) stage and the commercialization stage. This paper introduces a framework for evaluating the technology innovation efficiency of NEV enterprises based on data envelopment analysis (DEA), meta-frontier, and tobit regression. Then, the technology innovation efficiencies of 45 vehicle, battery, and motor & electronic control NEV enterprises are analyzed. The results show that: (i) During the survey period, the overall technology innovation capability of Chinese new energy vehicle enterprises is not strong, especially regarding economic transformation. However, the general development trend is on the rise. (ii) Different types of enterprises have different technology gap ratios in the two stages. The technology innovation efficiency level of motor and electronic control enterprises is relatively weak in the new energy vehicle industry. (iii) Many measures can be implemented to help improve technology innovation efficiency: encouraging the large-scale development of enterprises, reasonably increasing the shareholding ratio of significant shareholders, improving the ratio of capital investment, stimulating the vitality of innovation within the enterprise, and optimizing the number of employees.

Suggested Citation

  • Zhang, Tinglong & Li, Sasa & Li, Yifan & Wang, Weizhong, 2023. "Evaluation of technology innovation efficiency for the listed NEV enterprises in China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1445-1458.
  • Handle: RePEc:eee:ecanpo:v:80:y:2023:i:c:p:1445-1458
    DOI: 10.1016/j.eap.2023.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592623002539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2023.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mukherjee, Sanghamitra Chattopadhyay & Ryan, Lisa, 2020. "Factors influencing early battery electric vehicle adoption in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    3. Peng Xu & Fan Luo & Ziyue Zhang & Hongyi Xu, 2020. "Research on Innovation Efficiency of Listed Companies in Development Zone Based on the Three-Stage DEA-Tobit Model: A Case Study of Hubei Province," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-12, July.
    4. Dawit K. Mekonnen & David J. Spielman & Esendugue Greg Fonsah & Jeffrey H. Dorfman, 2015. "Innovation systems and technical efficiency in developing-country agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 46(5), pages 689-702, September.
    5. Siran Fang & Xiaoshan Xue & Ge Yin & Hong Fang & Jialin Li & Yongnian Zhang, 2020. "Evaluation and Improvement of Technological Innovation Efficiency of New Energy Vehicle Enterprises in China Based on DEA-Tobit Model," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    6. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    7. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    8. Dong, Feng & Liu, Yajie, 2020. "Policy evolution and effect evaluation of new-energy vehicle industry in China," Resources Policy, Elsevier, vol. 67(C).
    9. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    10. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    11. Li, Yaoming & Zhang, Qi & Liu, Boyu & McLellan, Benjamin & Gao, Yuan & Tang, Yanyan, 2018. "Substitution effect of New-Energy Vehicle Credit Program and Corporate Average Fuel Consumption Regulation for Green-car Subsidy," Energy, Elsevier, vol. 152(C), pages 223-236.
    12. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    13. Seema Sharma & V. J. Thomas, 2008. "Inter-country R&D efficiency analysis: An application of data envelopment analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(3), pages 483-501, September.
    14. Cheng, Yongwei & Fan, Tijun, 2021. "Production coopetition strategies for an FV automaker and a competitive NEV automaker under the dual-credit policy," Omega, Elsevier, vol. 103(C).
    15. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    17. Hugo Pinto & Tiago Santos Pereira, 2013. "Efficiency of Innovation Systems in Europe: An Institutional Approach to the Diversity of National Profiles," European Planning Studies, Taylor & Francis Journals, vol. 21(6), pages 755-779, June.
    18. Wang, Sinan & Chen, Kangda & Zhao, Fuquan & Hao, Han, 2019. "Technology pathways for complying with Corporate Average Fuel Consumption regulations up to 2030: A case study of China," Applied Energy, Elsevier, vol. 241(C), pages 257-277.
    19. Li, Xibao, 2009. "China's regional innovation capacity in transition: An empirical approach," Research Policy, Elsevier, vol. 38(2), pages 338-357, March.
    20. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    21. Chao Lu & Jie Tao & Qiuxian An & Xiaodong Lai, 2020. "A second-order cone programming based robust data envelopment analysis model for the new-energy vehicle industry," Annals of Operations Research, Springer, vol. 292(1), pages 321-339, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Shufeng & Xiong, Yongqing, 2024. "Differences in the innovation effectiveness of China's new energy vehicle industry policies: A comparison of subsidized and non-subsidized policies," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2022. "Innovation efficiency and technology heterogeneity within China's new energy vehicle industry: A two-stage NSBM approach embedded in a three-hierarchy meta-frontier framework," Energy Policy, Elsevier, vol. 161(C).
    3. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    4. Hsiao-Yen Mao & Wen-Min Lu & Hsin-Yen Shieh, 2023. "Exploring the Influence of Environmental Investment on Multinational Enterprises’ Performance from the Sustainability and Marketability Efficiency Perspectives," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    5. Sánchez-González, Carlos & Sarto, José Luis & Vicente, Luis, 2017. "The efficiency of mutual fund companies: Evidence from an innovative network SBM approach," Omega, Elsevier, vol. 71(C), pages 114-128.
    6. Wang, Qunwei & Hang, Ye & Sun, Licheng & Zhao, Zengyao, 2016. "Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 254-261.
    7. Plácido Moreno & Sebastián Lozano, 2014. "A network DEA assessment of team efficiency in the NBA," Annals of Operations Research, Springer, vol. 214(1), pages 99-124, March.
    8. Jian-Wen Fang & Yung-ho Chiu, 2017. "Research on Innovation Efficiency and Technology Gap in China Economic Development," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(02), pages 1-22, April.
    9. Wen-Min Lu & Qian Long Kweh & Kai-Chu Yang, 2022. "Multiplicative efficiency aggregation to evaluate Taiwanese local auditing institutions performance," Annals of Operations Research, Springer, vol. 315(2), pages 1243-1262, August.
    10. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    11. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    12. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    13. Suvvari Anandarao & S. Raja Sethu Durai & Phanindra Goyari, 2019. "Efficiency Decomposition in two-stage Data Envelopment Analysis: An application to Life Insurance companies in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 271-285, June.
    14. Victor John M. Cantor & Kim Leng Poh, 2020. "Efficiency measurement for general network systems: a slacks-based measure model," Journal of Productivity Analysis, Springer, vol. 54(1), pages 43-57, August.
    15. Mohammad Nourani & Qian Long Kweh & Wen-Min Lu & Ikhlaas Gurrib, 2022. "Operational and investment efficiency of investment trust companies: Do foreign firms outperform domestic firms?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-26, December.
    16. Jung Ho Park & Kwangsoo Shin, 2018. "Efficiency of Government-Sponsored R&D Projects: A Metafrontier DEA Approach," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    17. Yu, Ming-Miin & Lin, Chung-I & Chen, Kuan-Chen & Chen, Li-Hsueh, 2021. "Measuring Taiwanese bank performance: A two-system dynamic network data envelopment analysis approach," Omega, Elsevier, vol. 98(C).
    18. Kao, Chiang, 2014. "Efficiency decomposition in network data envelopment analysis with slacks-based measures," Omega, Elsevier, vol. 45(C), pages 1-6.
    19. Siran Fang & Xiaoshan Xue & Ge Yin & Hong Fang & Jialin Li & Yongnian Zhang, 2020. "Evaluation and Improvement of Technological Innovation Efficiency of New Energy Vehicle Enterprises in China Based on DEA-Tobit Model," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    20. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:80:y:2023:i:c:p:1445-1458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.