IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v112y2016icp254-261.html
   My bibliography  Save this article

Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach

Author

Listed:
  • Wang, Qunwei
  • Hang, Ye
  • Sun, Licheng
  • Zhao, Zengyao

Abstract

Enterprises driven by the ability to effectively innovate and market products and services (called “innovation enterprises”) experience a complex progression from initial research to profitability. The paper considers activities related to innovation during two stages of growth experienced by new energy enterprises: the research and development (R&D) process and the marketing process. A non-radial data envelopment analysis method was used to construct indices to measure R&D efficiency, market efficiency, and integrated innovation efficiency. Empirical research using these indices and data about 38 Chinese new energy enterprises from 2009 to 2013 revealed three key findings. First, new energy enterprises are generally inefficient when it comes to innovating. This is particularly true during the R&D stage of innovation, and there is periodically a phenomenon where enterprises focusing less on R&D, and instead emphasizing marketing. Second, different types of new energy enterprises differ with respect to their efficiency in innovation. Of these, nuclear power enterprises are the most efficient in integrated innovation and marketing; wind energy enterprises are the most efficient in R&D innovations; and solar energy enterprises lag behind the others in R&D efficiency. Third, innovation activities are considered “effective and intensive” in only a small number of enterprises; innovation in most enterprises can be generally considered “extensive and inefficient”. Enterprises with different innovation and marketing efficiency modes should implement targeted improvement strategies, based on efficiency characteristics.

Suggested Citation

  • Wang, Qunwei & Hang, Ye & Sun, Licheng & Zhao, Zengyao, 2016. "Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 254-261.
  • Handle: RePEc:eee:tefoso:v:112:y:2016:i:c:p:254-261
    DOI: 10.1016/j.techfore.2016.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516300415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2016.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Eric C. & Huang, Weichiao, 2007. "Relative efficiency of R&D activities: A cross-country study accounting for environmental factors in the DEA approach," Research Policy, Elsevier, vol. 36(2), pages 260-273, March.
    2. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    3. Yung-ho Chiu & Chin-wei Huang & Yu-Chuan Chen, 2012. "The R&D value-chain efficiency measurement for high-tech industries in China," Asia Pacific Journal of Management, Springer, vol. 29(4), pages 989-1006, December.
    4. Hye-Seon Moon & Jeong-Dong Lee, 2005. "A fuzzy set theory approach to national composite S&T indices," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(1), pages 67-83, July.
    5. Chiu, Ching-Ren & Chiu, Yung-Ho & Chen, Yu-Chuan & Fang, Chen-Ling, 2016. "Exploring the source of metafrontier inefficiency for various bank types in the two-stage network system with undesirable output," Pacific-Basin Finance Journal, Elsevier, vol. 36(C), pages 1-13.
    6. Hashimoto, Akihiro & Haneda, Shoko, 2008. "Measuring the change in R&D efficiency of the Japanese pharmaceutical industry," Research Policy, Elsevier, vol. 37(10), pages 1829-1836, December.
    7. Wanke, Peter & Barros, Carlos Pestana, 2016. "Efficiency drivers in Brazilian insurance: A two-stage DEA meta frontier-data mining approach," Economic Modelling, Elsevier, vol. 53(C), pages 8-22.
    8. Tigabu, Aschalew D. & Berkhout, Frans & van Beukering, Pieter, 2015. "Technology innovation systems and technology diffusion: Adoption of bio-digestion in an emerging innovation system in Rwanda," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 318-330.
    9. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    10. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    11. repec:fth:harver:1473 is not listed on IDEAS
    12. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    13. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    14. Astrid Cullmann & Jens Schmidt-Ehmcke & Petra Zloczysti, 2012. "R&D efficiency and barriers to entry: a two stage semi-parametric DEA approach," Oxford Economic Papers, Oxford University Press, vol. 64(1), pages 176-196, January.
    15. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    16. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    17. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    18. Hall, Bronwyn H & Ziedonis, Rosemarie Ham, 2001. "The Patent Paradox Revisited: An Empirical Study of Patenting in the U.S. Semiconductor Industry, 1979-1995," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 101-128, Spring.
    19. Wang, Chun-Hsien & Lu, Yung-Hsiang & Huang, Chin-Wei & Lee, Jun-Yen, 2013. "R&D, productivity, and market value: An empirical study from high-technology firms," Omega, Elsevier, vol. 41(1), pages 143-155.
    20. Zhong, Wei & Yuan, Wei & Li, Susan X. & Huang, Zhimin, 2011. "The performance evaluation of regional R&D investments in China: An application of DEA based on the first official China economic census data," Omega, Elsevier, vol. 39(4), pages 447-455, August.
    21. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    22. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    23. Seema Sharma & V. J. Thomas, 2008. "Inter-country R&D efficiency analysis: An application of data envelopment analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(3), pages 483-501, September.
    24. Chien Wang & Ram Gopal & Stanley Zionts, 1997. "Use of Data Envelopment Analysis in assessing Information Technology impact on firm performance," Annals of Operations Research, Springer, vol. 73(0), pages 191-213, October.
    25. Liadaki, Aggeliki & Gaganis, Chrysovalantis, 2010. "Efficiency and stock performance of EU banks: Is there a relationship?," Omega, Elsevier, vol. 38(5), pages 254-259, October.
    26. Tigabu, Aschalew Demeke & Berkhout, Frans & van Beukering, Pieter, 2015. "The diffusion of a renewable energy technology and innovation system functioning: Comparing bio-digestion in Kenya and Rwanda," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 331-345.
    27. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    28. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    29. Li, Xibao, 2009. "China's regional innovation capacity in transition: An empirical approach," Research Policy, Elsevier, vol. 38(2), pages 338-357, March.
    30. Jiancheng Guan & Kaihua Chen, 2010. "Modeling macro-R&D production frontier performance: an application to Chinese province-level R&D," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 165-173, January.
    31. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    32. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    33. Charoenrat, Teerawat & Harvie, Charles, 2014. "The efficiency of SMEs in Thai manufacturing: A stochastic frontier analysis," Economic Modelling, Elsevier, vol. 43(C), pages 372-393.
    34. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    35. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    36. Schmidt-Ehmcke, Jens & Zloczysti, Petra, 2011. "Industries at the World Technology Frontier: Measuring R&D Efficiency in a Non-Parametric DEA Framework," CEPR Discussion Papers 8579, C.E.P.R. Discussion Papers.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hongkuan & He, Haiyan & Shan, Jiefei & Cai, Jingjing, 2019. "Innovation efficiency of semiconductor industry in China: A new framework based on generalized three-stage DEA analysis," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 136-148.
    2. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    3. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    4. Liu, Hui-hui & Yang, Guo-liang & Liu, Xiao-xiao & Song, Yao-yao, 2020. "R&D performance assessment of industrial enterprises in China: A two-stage DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    5. Wang, Ya & Pan, Jiao-feng & Pei, Rui-min & Yi, Bo-Wen & Yang, Guo-liang, 2020. "Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    6. Jiancheng Guan & Kairui Zuo, 2014. "A cross-country comparison of innovation efficiency," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 541-575, August.
    7. Ibrahim Alnafrah, 2021. "Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-28, December.
    8. Cullmann, Astrid & Zloczysti, Petra, 2013. "Towards an Efficient Use of R&D ? Accounting for Heterogeneity in the OECD," CEPR Discussion Papers 9345, C.E.P.R. Discussion Papers.
    9. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2020. "Reprint of "Performance evaluation of China's high-tech innovation process :Analysis based on the innovation value chain"," Technovation, Elsevier, vol. 94.
    10. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2018. "Performance evaluation of China's high-tech innovation process: Analysis based on the innovation value chain," Technovation, Elsevier, vol. 74, pages 42-53.
    11. Chen Kaihua & Kou Mingting, 2014. "Staged efficiency and its determinants of regional innovation systems: a two-step analytical procedure," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(2), pages 627-657, March.
    12. Dariush Akbarian, 2021. "Network DEA based on DEA-ratio," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    13. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    14. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    15. Huang, Tai-Hsin & Chen, Kuan-Chen & Lin, Chung-I, 2018. "An extension from network DEA to copula-based network SFA: Evidence from the U.S. commercial banks in 2009," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 51-62.
    16. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    17. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    18. Huang, Chin-wei & Ho, Foo Nin & Chiu, Yung-ho, 2014. "Measurement of tourist hotels׳ productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan," Omega, Elsevier, vol. 48(C), pages 49-59.
    19. Junhee Bae & Yanghon Chung & Hyesoo Ko, 2021. "Analysis of efficiency in public research activities in terms of knowledge spillover: focusing on earthquake R&D accomplishments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2249-2264, September.
    20. Wade D. Cook & Chuanyin Guo & Wanghong Li & Zhepeng Li & Liang Liang & Joe Zhu, 2017. "Efficiency Measurement of Multistage Processes: Context Dependent Numbers of Stages," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:112:y:2016:i:c:p:254-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.