IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v161y2022ics0301421521005735.html
   My bibliography  Save this article

Innovation efficiency and technology heterogeneity within China's new energy vehicle industry: A two-stage NSBM approach embedded in a three-hierarchy meta-frontier framework

Author

Listed:
  • Chen, Yufeng
  • Ni, Liangfu
  • Liu, Kelong

Abstract

Exploring innovation efficiency (IE) and technology heterogeneity within the new energy vehicle (NEV) industry is significant for advising industrial growth and healthy development. This paper embeds a two-stage network slacks-based measure (NSBM) approach into a three-hierarchy meta-frontier framework to evaluate the value chain's IE and the technology heterogeneity under the industrial chain structure. The observations were as follows. The industrial IE was low, particularly in the product creation stage, and the downstream IE ranked at the top, followed by the midstream and upstream. Furthermore, technological heterogeneities existed within the industry; the upstream technology level aligned with that of the industry, whereas the gaps between midstream, downstream, and industry were significant. Analogously, the battery enterprises' gap was minor upstream; nevertheless, the gaps between electric engine, electric control enterprises, and upstream were more pronounced. Additionally, management inefficiency contributed more to the industrial innovation inefficiency than the technology gaps inefficiency. Finally, industrial productivity declined sharply due to the technology gaps' change, except in battery enterprises. Our work will provide valuable insights for industrial policies' evaluation and improvement.

Suggested Citation

  • Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2022. "Innovation efficiency and technology heterogeneity within China's new energy vehicle industry: A two-stage NSBM approach embedded in a three-hierarchy meta-frontier framework," Energy Policy, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:enepol:v:161:y:2022:i:c:s0301421521005735
    DOI: 10.1016/j.enpol.2021.112708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521005735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Chengtao & Wu, Tian & Ou, Xunmin & Zhang, Qian & Zhang, Xu & Zhang, Xiliang, 2013. "Life-cycle private costs of hybrid electric vehicles in the current Chinese market," Energy Policy, Elsevier, vol. 55(C), pages 501-510.
    2. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    3. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    4. Lin, Boqiang & Li, Zheng, 2020. "Is more use of electricity leading to less carbon emission growth? An analysis with a panel threshold model," Energy Policy, Elsevier, vol. 137(C).
    5. Chen, Yao & Cook, Wade D. & Zhu, Joe, 2010. "Deriving the DEA frontier for two-stage processes," European Journal of Operational Research, Elsevier, vol. 202(1), pages 138-142, April.
    6. Zoltan J. Acs & David B. Audretsch, 2008. "Innovation in Large and Small Firms: An Empirical Analysis," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 1, pages 3-15, Edward Elgar Publishing.
    7. Chen, Yufeng & Ma, Yanbai, 2021. "Does green investment improve energy firm performance?," Energy Policy, Elsevier, vol. 153(C).
    8. Lin, Boqiang & Tan, Ruipeng, 2017. "Are people willing to pay more for new energy bus fares?," Energy, Elsevier, vol. 130(C), pages 365-372.
    9. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    10. Li, Pei & Lu, Yi & Wang, Jin, 2020. "The effects of fuel standards on air pollution: Evidence from China," Journal of Development Economics, Elsevier, vol. 146(C).
    11. Rong, Ke & Shi, Yongjiang & Shang, Tianjiao & Chen, Yantai & Hao, Han, 2017. "Organizing business ecosystems in emerging electric vehicle industry: Structure, mechanism, and integrated configuration," Energy Policy, Elsevier, vol. 107(C), pages 234-247.
    12. Wanke, Peter & Barros, Carlos Pestana, 2016. "Efficiency drivers in Brazilian insurance: A two-stage DEA meta frontier-data mining approach," Economic Modelling, Elsevier, vol. 53(C), pages 8-22.
    13. Zhou, Xiaoyang & Chen, Hao & Chai, Jian & Wang, Shouyang & Lev, Benjamin, 2020. "Performance evaluation and prediction of the integrated circuit industry in China: A hybrid method," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    14. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    15. Wang, Ya & Pan, Jiao-feng & Pei, Rui-min & Yi, Bo-Wen & Yang, Guo-liang, 2020. "Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    16. Song, Yanwu & Zhang, Jinrui & Song, Yingkang & Fan, Xinran & Zhu, Yuqing & Zhang, Chen, 2020. "Can industry-university-research collaborative innovation efficiency reduce carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    17. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    18. Li, Hongkuan & He, Haiyan & Shan, Jiefei & Cai, Jingjing, 2019. "Innovation efficiency of semiconductor industry in China: A new framework based on generalized three-stage DEA analysis," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 136-148.
    19. Wang, Qunwei & Hang, Ye & Sun, Licheng & Zhao, Zengyao, 2016. "Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 254-261.
    20. Wang, Zheng & Zhu, Yanshuo & Zhu, Yongbin & Shi, Ying, 2016. "Energy structure change and carbon emission trends in China," Energy, Elsevier, vol. 115(P1), pages 369-377.
    21. Siran Fang & Xiaoshan Xue & Ge Yin & Hong Fang & Jialin Li & Yongnian Zhang, 2020. "Evaluation and Improvement of Technological Innovation Efficiency of New Energy Vehicle Enterprises in China Based on DEA-Tobit Model," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    22. Chiang Kao, 2014. "Efficiency Decomposition in Network Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 55-77, Springer.
    23. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    24. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    25. Hayami, Yujiro & Ruttan, Vernon W, 1970. "Agricultural Productivity Differences Among Countries," American Economic Review, American Economic Association, vol. 60(5), pages 895-911, December.
    26. Wang, Chun-Hsien & Lu, Yung-Hsiang & Huang, Chin-Wei & Lee, Jun-Yen, 2013. "R&D, productivity, and market value: An empirical study from high-technology firms," Omega, Elsevier, vol. 41(1), pages 143-155.
    27. Xiu SHI & Rui JING & Guang-ming HOU & Jun-peng WANG, 2019. "Network Position Advantage and Technological Innovation of China’s New Energy Vehicle Based on the Perspective of Network Theory," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    28. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    29. Masiero, Gilmar & Ogasavara, Mario Henrique & Jussani, Ailton Conde & Risso, Marcelo Luiz, 2017. "The global value chain of electric vehicles: A review of the Japanese, South Korean and Brazilian cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 290-296.
    30. Li, Lan-bing & Liu, Bing-lian & Liu, Wei-lin & Chiu, Yung-Ho, 2017. "Efficiency evaluation of the regional high-tech industry in China: A new framework based on meta-frontier dynamic DEA analysis," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 24-33.
    31. Chiu, Ching-Ren & Liou, Je-Liang & Wu, Pei-Ing & Fang, Chen-Ling, 2012. "Decomposition of the environmental inefficiency of the meta-frontier with undesirable output," Energy Economics, Elsevier, vol. 34(5), pages 1392-1399.
    32. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    33. Dong-hyun Oh & Jeong-dong Lee, 2010. "A metafrontier approach for measuring Malmquist productivity index," Empirical Economics, Springer, vol. 38(1), pages 47-64, February.
    34. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    35. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    36. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    37. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    38. Wang, Hewu & Zhang, Xiaobin & Ouyang, Minggao, 2015. "Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing," Applied Energy, Elsevier, vol. 157(C), pages 710-719.
    39. Han Hao & Feiqi Liu & Xin Sun & Zongwei Liu & Fuquan Zhao, 2019. "Quantifying the Energy, Environmental, Economic, Resource Co-Benefits and Risks of GHG Emissions Abatement: The Case of Passenger Vehicles in China," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    40. Meng, Donghui & Li, Xianjun & Rong, Ke, 2019. "Industry-to-university knowledge transfer in ecosystem-based academic entrepreneurship: Case study of automotive dynamics & control group in Tsinghua University," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 249-262.
    41. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    42. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    43. Shi, Xing & Wu, Yanrui & Fu, Dahai, 2020. "Does University-Industry collaboration improve innovation efficiency? Evidence from Chinese Firms⋄," Economic Modelling, Elsevier, vol. 86(C), pages 39-53.
    44. Liu, Zongwei & Hao, Han & Cheng, Xiang & Zhao, Fuquan, 2018. "Critical issues of energy efficient and new energy vehicles development in China," Energy Policy, Elsevier, vol. 115(C), pages 92-97.
    45. Feng, Chao & Wang, Miao & Liu, Guan-Chun & Huang, Jian-Bai, 2017. "Sources of economic growth in China from 2000–2013 and its further sustainable growth path: A three-hierarchy meta-frontier data envelopment analysis," Economic Modelling, Elsevier, vol. 64(C), pages 334-348.
    46. Ying Li & Yung‐ho Chiu & Hongyi Cen & Tai‐Yu Lin, 2019. "The operating efficiency of financial holding and nonfinancial holding banks—Epsilou‐based measure metafrontier data envelopment analysis model," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 40(5), pages 488-499, July.
    47. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2018. "Performance evaluation of China's high-tech innovation process: Analysis based on the innovation value chain," Technovation, Elsevier, vol. 74, pages 42-53.
    48. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    49. Chao Lu & Jie Tao & Qiuxian An & Xiaodong Lai, 2020. "A second-order cone programming based robust data envelopment analysis model for the new-energy vehicle industry," Annals of Operations Research, Springer, vol. 292(1), pages 321-339, September.
    50. Satoshi Honma & Jin-Li Hu, 2018. "A meta-stochastic frontier analysis for energy efficiency of regions in Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-16, December.
    51. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    52. Ou, Shiqi & Lin, Zhenhong & Qi, Liang & Li, Jie & He, Xin & Przesmitzki, Steven, 2018. "The dual-credit policy: Quantifying the policy impact on plug-in electric vehicle sales and industry profits in China," Energy Policy, Elsevier, vol. 121(C), pages 597-610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanwei Li & Jingjie Li & Junli Ding & Mochen Sun & Chenying Cui, 2023. "A Game Strategy Study on Innovation Efficiency of China’s Listed Charging Pile Companies: Based on Generalized Fuzzy DEA Method," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    2. Hsiao, Cody Yu-Ling & Yang, Rui & Zheng, Xin & Chiu, Yi-Bin, 2023. "Evaluations of policy contagion for new energy vehicle industry in China," Energy Policy, Elsevier, vol. 173(C).
    3. Danlei Feng & Mingzhao Hu & Lingdi Zhao & Sha Liu, 2022. "The Impact of Firm Heterogeneity and External Factor Change on Innovation: Evidence from the Vehicle Industry Sector," Sustainability, MDPI, vol. 14(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Hsiao-Yen Mao & Wen-Min Lu & Hsin-Yen Shieh, 2023. "Exploring the Influence of Environmental Investment on Multinational Enterprises’ Performance from the Sustainability and Marketability Efficiency Perspectives," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    3. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    4. Mohammad Nourani & Qian Long Kweh & Wen-Min Lu & Ikhlaas Gurrib, 2022. "Operational and investment efficiency of investment trust companies: Do foreign firms outperform domestic firms?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-26, December.
    5. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    6. Ming-Fu Hsu & Ying-Shao Hsin & Fu-Jiing Shiue, 2022. "Business analytics for corporate risk management and performance improvement," Annals of Operations Research, Springer, vol. 315(2), pages 629-669, August.
    7. Wang, Ya & Pan, Jiao-feng & Pei, Rui-min & Yi, Bo-Wen & Yang, Guo-liang, 2020. "Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    8. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    9. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    10. Li, Yongjun & Liu, Jin & Ang, Sheng & Yang, Feng, 2021. "Performance evaluation of two-stage network structures with fixed-sum outputs: An application to the 2018winter Olympic Games," Omega, Elsevier, vol. 102(C).
    11. Jiawei Yang & Lei Fang, 2022. "Average lexicographic efficiency decomposition in two-stage data envelopment analysis: an application to China’s regional high-tech innovation systems," Annals of Operations Research, Springer, vol. 312(2), pages 1051-1093, May.
    12. Ibrahim Alnafrah, 2021. "Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-28, December.
    13. Lozano, Sebastián, 2016. "Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector," Omega, Elsevier, vol. 60(C), pages 73-84.
    14. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    15. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    16. Fenfen Li & Bo Dai & Qifan Wu, 2021. "Dynamic Green Growth Assessment of China’s Industrial System with an Improved SBM Model and Global Malmquist Index," Mathematics, MDPI, vol. 9(20), pages 1-26, October.
    17. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    18. Suvvari Anandarao & S. Raja Sethu Durai & Phanindra Goyari, 2019. "Efficiency Decomposition in two-stage Data Envelopment Analysis: An application to Life Insurance companies in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 271-285, June.
    19. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    20. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:161:y:2022:i:c:s0301421521005735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.