IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v71y2016icp77-85.html
   My bibliography  Save this article

An analytical approximation formula for European option pricing under a new stochastic volatility model with regime-switching

Author

Listed:
  • He, Xin-Jiang
  • Zhu, Song-Ping

Abstract

In this paper, an analytical approximation formula for pricing European options is obtained under a newly proposed hybrid model with the volatility of volatility in the Heston model following a Markov chain, the adoption of which is motivated by the empirical evidence of the existence of regime-switching in real markets. We first derive the coupled PDE (partial differential equation) system that governs the European option price, which is solved with the perturbation method. It should be noted that the newly derived formula is fast and easy to implement with only normal distribution function involved, and numerical experiments confirm that our formula could provide quite accurate option prices, especially for relatively short-tenor ones. Finally, empirical studies are carried out to show the superiority of our model based on S&P 500 returns and options with the time to expiry less than one month.

Suggested Citation

  • He, Xin-Jiang & Zhu, Song-Ping, 2016. "An analytical approximation formula for European option pricing under a new stochastic volatility model with regime-switching," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 77-85.
  • Handle: RePEc:eee:dyncon:v:71:y:2016:i:c:p:77-85
    DOI: 10.1016/j.jedc.2016.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188916301336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2016.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedro L. Valls Pereira, 2004. "How Persistent is Volatility? An Answer with Stochastic Volatility Models with Markov Regime Switching State Equations," Finance Lab Working Papers flwp_59, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    2. Soosung Hwang & Steve E. Satchell & Pedro L. Valls Pereira, 2007. "How Persistent is Stock Return Volatility? An Answer with Markov Regime Switching Stochastic Volatility Models," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 34(5‐6), pages 1002-1024, June.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    5. Gimeno, Ricardo & Nave, Juan M., 2009. "A genetic algorithm estimation of the term structure of interest rates," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2236-2250, April.
    6. Bruce Grace, 2000. "Black-Scholes option pricing via genetic algorithms," Applied Economics Letters, Taylor & Francis Journals, vol. 7(2), pages 129-132.
    7. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Andreas Kaeck & Carol Alexander, 2010. "VIX Dynamics with Stochastic Volatility of Volatility," ICMA Centre Discussion Papers in Finance icma-dp2010-11, Henley Business School, University of Reading.
    10. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    11. Kalimipalli, Madhu & Susmel, Raul, 2004. "Regime-switching stochastic volatility and short-term interest rates," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 309-329, June.
    12. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    13. Peiro, Amado, 1999. "Skewness in financial returns," Journal of Banking & Finance, Elsevier, vol. 23(6), pages 847-862, June.
    14. Kian Guan Lim & Da Zhi, 2002. "Pricing options using implied trees: Evidence from FTSE‐100 options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(7), pages 601-626, July.
    15. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    16. A. E. Whalley & P. Wilmott, 1997. "An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 307-324, July.
    17. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    18. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    19. Sam Howison, 2005. "Matched asymptotic expansions in financial engineering," OFRC Working Papers Series 2005mf01, Oxford Financial Research Centre.
    20. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    21. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-253, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loretta Mastroeni, 2022. "Pricing Options with Vanishing Stochastic Volatility," Risks, MDPI, vol. 10(9), pages 1-16, September.
    2. Sha Lin & Xin-Jiang He, 2022. "Analytically Pricing European Options under a New Two-Factor Heston Model with Regime Switching," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1069-1085, March.
    3. Yichen Lu & Ruili Song, 2024. "Pricing of a Binary Option Under a Mixed Exponential Jump Diffusion Model," Mathematics, MDPI, vol. 12(20), pages 1-14, October.
    4. Lin, Sha & He, Xin-Jiang, 2020. "Pricing variance and volatility swaps with stochastic volatility, stochastic interest rate and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    5. Liu, Yue & Sun, Huaping & Zhang, Jijian & Taghizadeh-Hesary, Farhad, 2020. "Detection of volatility regime-switching for crude oil price modeling and forecasting," Resources Policy, Elsevier, vol. 69(C).
    6. Ben-zhang Yang & Xinjiang He & Nan-jing Huang, 2019. "Equilibrium price and optimal insider trading strategy under stochastic liquidity with long memory," Papers 1901.00345, arXiv.org, revised Jan 2019.
    7. Naman Krishna Pande & Puneet Pasricha & Arun Kumar & Arvind Kumar Gupta, 2024. "European Option Pricing in Regime Switching Framework via Physics-Informed Residual Learning," Papers 2410.10474, arXiv.org.
    8. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun & Zhang, Yue, 2019. "Pricing discrete barrier options under jump-diffusion model with liquidity risk," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 347-368.
    9. Xie, Yurong & Deng, Guohe, 2022. "Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    10. Bianca Reichert & Adriano Mendon a Souza, 2022. "Can the Heston Model Forecast Energy Generation? A Systematic Literature Review," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 289-295.
    11. Jing, Bo & Li, Shenghong & Ma, Yong, 2021. "Consistent pricing of VIX options with the Hawkes jump-diffusion model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    12. Xin-Jiang He & Song-Ping Zhu, 2019. "Variance And Volatility Swaps Under A Two-Factor Stochastic Volatility Model With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-19, June.
    13. Lin, Sha & He, Xin-Jiang, 2021. "A closed-form pricing formula for forward start options under a regime-switching stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    14. Ali Nasir & Ambreen Khursheed & Kazim Ali & Faisal Mustafa, 2021. "A Markov Decision Process Model for Optimal Trade of Options Using Statistical Data," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 327-346, August.
    15. Bo Jing & Shenghong Li & Yong Ma, 2020. "Pricing VIX options with volatility clustering," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 928-944, June.
    16. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "European quanto option pricing in presence of liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 230-244.
    17. Xin-Jiang He & Sha Lin, 2022. "An Analytical Approximation Formula for Barrier Option Prices Under the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1413-1425, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sha Lin & Xin-Jiang He, 2022. "Analytically Pricing European Options under a New Two-Factor Heston Model with Regime Switching," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1069-1085, March.
    2. Lin, Sha & He, Xin-Jiang, 2021. "A closed-form pricing formula for forward start options under a regime-switching stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Xin‐Jiang He & Wenting Chen, 2021. "A semianalytical formula for European options under a hybrid Heston–Cox–Ingersoll–Ross model with regime switching," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 343-352, January.
    4. Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    7. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    8. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    9. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    10. Xin‐Jiang He & Sha Lin, 2023. "Analytically pricing European options under a hybrid stochastic volatility and interest rate model with a general correlation structure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(7), pages 951-967, July.
    11. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    12. Kolkiewicz, A. W. & Tan, K. S., 2006. "Unit-Linked Life Insurance Contracts with Lapse Rates Dependent on Economic Factors," Annals of Actuarial Science, Cambridge University Press, vol. 1(1), pages 49-78, March.
    13. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    14. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    15. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    16. Chateau, J. -P. & Dufresne, D., 2002. "The stochastic-volatility American put option of banks' credit line commitments:: Valuation and policy implications," International Review of Financial Analysis, Elsevier, vol. 11(2), pages 159-181.
    17. Gang Li & Chu Zhang, 2010. "On the Number of State Variables in Options Pricing," Management Science, INFORMS, vol. 56(11), pages 2058-2075, November.
    18. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    19. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    20. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.

    More about this item

    Keywords

    European option; Regime-switching Heston model; Perturbation method; Empirical studies;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:71:y:2016:i:c:p:77-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.