IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v15y2012i02ns0219024912500148.html
   My bibliography  Save this article

Comparison Of Mean Variance Like Strategies For Optimal Asset Allocation Problems

Author

Listed:
  • J. WANG

    (David R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, N2L 3G1, Canada)

  • P. A. FORSYTH

    (David R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, N2L 3G1, Canada)

Abstract

We determine the optimal dynamic investment policy for a mean quadratic variation objective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We compare the efficient frontiers and optimal investment policies for three mean variance like strategies: pre-commitment mean variance, time-consistent mean variance, and mean quadratic variation, assuming realistic investment constraints (e.g. no bankruptcy, finite shorting, borrowing). When the investment policy is constrained, the efficient frontiers for all three objective functions are similar, but the optimal policies are quite different.

Suggested Citation

  • J. Wang & P. A. Forsyth, 2012. "Comparison Of Mean Variance Like Strategies For Optimal Asset Allocation Problems," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-32.
  • Handle: RePEc:wsi:ijtafx:v:15:y:2012:i:02:n:s0219024912500148
    DOI: 10.1142/S0219024912500148
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024912500148
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024912500148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong, F. & Oosterlee, C.W., 2016. "Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 23-38.
    2. Ishak Alia & Farid Chighoub & Nabil Khelfallah & Josep Vives, 2021. "Time-Consistent Investment and Consumption Strategies under a General Discount Function," JRFM, MDPI, vol. 14(2), pages 1-27, February.
    3. Stefania Corsaro & Valentina De Simone & Zelda Marino & Francesca Perla, 2020. "$$l_1$$ l 1 -Regularization for multi-period portfolio selection," Annals of Operations Research, Springer, vol. 294(1), pages 75-86, November.
    4. Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
    5. Masashi Ieda, 2022. "Continuous-Time Portfolio Optimization for Absolute Return Funds," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(4), pages 675-696, December.
    6. Dang, D.M. & Forsyth, P.A., 2016. "Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach," European Journal of Operational Research, Elsevier, vol. 250(3), pages 827-841.
    7. Cong, F. & Oosterlee, C.W., 2016. "On pre-commitment aspects of a time-consistent strategy for a mean-variance investor," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 178-193.
    8. Masashi Ieda, 2021. "Continuous-time Portfolio Optimization for Absolute Return Funds," Papers 2108.09985, arXiv.org, revised Mar 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:15:y:2012:i:02:n:s0219024912500148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.