IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v18y2014i4p873-915.html
   My bibliography  Save this article

Portfolio optimization under convex incentive schemes

Author

Listed:
  • Maxim Bichuch
  • Stephan Sturm

Abstract

We consider the terminal wealth utility maximization problem from the point of view of a portfolio manager who is paid by an incentive scheme, which is given as a convex function g of the terminal wealth. The manager’s own utility function U is assumed to be smooth and strictly concave; however, the resulting utility function U∘g fails to be concave. As a consequence, the problem considered here does not fit into the classical portfolio optimization theory. Using duality theory, we prove wealth-independent existence and uniqueness of the optimal portfolio in general (incomplete) semimartingale markets as long as the unique optimizer of the dual problem has a continuous law. In many cases, this existence and uniqueness result is independent of the incentive scheme and depends only on the structure of the set of equivalent local martingale measures. As examples, we discuss (complete) one-dimensional models as well as (incomplete) lognormal mixture and popular stochastic volatility models. We also provide a detailed analysis of the case where the unique optimizer of the dual problem does not have a continuous law, leading to optimization problems whose solvability by duality methods depends on the initial wealth of the investor. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Maxim Bichuch & Stephan Sturm, 2014. "Portfolio optimization under convex incentive schemes," Finance and Stochastics, Springer, vol. 18(4), pages 873-915, October.
  • Handle: RePEc:spr:finsto:v:18:y:2014:i:4:p:873-915
    DOI: 10.1007/s00780-014-0236-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-014-0236-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-014-0236-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank Seifried, 2010. "Optimal investment with deferred capital gains taxes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 181-199, February.
    2. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    3. B. Bouchard & N. Touzi & A. Zeghal, 2004. "Dual formulation of the utility maximization problem: the case of nonsmooth utility," Papers math/0405290, arXiv.org.
    4. Jennifer N. Carpenter, 2000. "Does Option Compensation Increase Managerial Risk Appetite?," Journal of Finance, American Finance Association, vol. 55(5), pages 2311-2331, October.
    5. Kasper Larsen, 2005. "Optimal portfolio delegation when parties have different coefficients of risk aversion," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 503-512.
    6. Griselda Deelstra & Huyên Pham & Nizar Touzi, 2001. "Dual formulation of the utility maximisation problem under transaction costs," ULB Institutional Repository 2013/7596, ULB -- Universite Libre de Bruxelles.
    7. repec:dau:papers:123456789/1531 is not listed on IDEAS
    8. Amendinger, Jürgen, 2000. "Martingale representation theorems for initially enlarged filtrations," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 101-116, September.
    9. Westray, Nicholas & Zheng, Harry, 2009. "Constrained nonsmooth utility maximization without quadratic inf convolution," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1561-1579, May.
    10. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    11. Alos, Elisa & Ewald, Christian-Oliver, 2007. "Malliavin differentiability of the Heston volatility and applications to option pricing," MPRA Paper 3237, University Library of Munich, Germany.
    12. Nicholas Westray & Harry Zheng, 2011. "Minimal sufficient conditions for a primal optimizer in nonsmooth utility maximization," Finance and Stochastics, Springer, vol. 15(3), pages 501-512, September.
    13. repec:bla:jfinan:v:59:y:2004:i:1:p:207-225 is not listed on IDEAS
    14. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    15. Stavros Panageas & Mark M. Westerfield, 2009. "High‐Water Marks: High Risk Appetites? Convex Compensation, Long Horizons, and Portfolio Choice," Journal of Finance, American Finance Association, vol. 64(1), pages 1-36, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Zou, 2017. "Optimal Investment In Hedge Funds Under Loss Aversion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
    2. Marcos Escobar-Anel & Vincent Höhn & Luis Seco & Rudi Zagst, 2018. "Optimal fee structures in hedge funds," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 522-542, December.
    3. Escobar-Anel, M. & Havrylenko, Y. & Zagst, R., 2020. "Optimal fees in hedge funds with first-loss compensation," Journal of Banking & Finance, Elsevier, vol. 118(C).
    4. Yang Liu & Zhenyu Shen, 2024. "PSAHARA Utility Family: Modeling Non-monotone Risk Aversion and Convex Compensation in Incomplete Markets," Papers 2406.00435, arXiv.org, revised Nov 2024.
    5. Thai Nguyen & Mitja Stadje, 2018. "Optimal investment for participating insurance contracts under VaR-Regulation," Papers 1805.09068, arXiv.org, revised Jul 2019.
    6. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    7. Zongxia Liang & Yang Liu & Litian Zhang, 2021. "A Framework of State-dependent Utility Optimization with General Benchmarks," Papers 2101.06675, arXiv.org, revised Dec 2023.
    8. Alain Bensoussan & Abel Cadenillas & Hyeng Keun Koo, 2015. "Entrepreneurial Decisions on Effort and Project with a Nonconcave Objective Function," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 902-914, October.
    9. Zongxia Liang & Yang Liu & Ming Ma & Rahul Pothi Vinoth, 2021. "A Unified Formula of the Optimal Portfolio for Piecewise Hyperbolic Absolute Risk Aversion Utilities," Papers 2107.06460, arXiv.org, revised Oct 2023.
    10. John Armstrong & Damiano Brigo & Alex S. L. Tse, 2024. "The importance of dynamic risk constraints for limited liability operators," Annals of Operations Research, Springer, vol. 336(1), pages 861-898, May.
    11. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    12. Anne MacKay & Adriana Ocejo, 2022. "Portfolio Optimization With a Guaranteed Minimum Maturity Benefit and Risk-Adjusted Fees," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1021-1049, June.
    13. Christian Dehm & Thai Nguyen & Mitja Stadje, 2020. "Non-concave expected utility optimization with uncertain time horizon," Papers 2005.13831, arXiv.org, revised Oct 2021.
    14. Bi, Xiuchun & Cui, Zhenyu & Fan, Jiacheng & Yuan, Lvning & Zhang, Shuguang, 2023. "Optimal investment problem under behavioral setting: A Lagrange duality perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maxim Bichuch & Stephan Sturm, 2011. "Portfolio Optimization under Convex Incentive Schemes," Papers 1109.2945, arXiv.org, revised Oct 2013.
    2. Frank Seifried, 2010. "Optimal investment with deferred capital gains taxes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 181-199, February.
    3. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    4. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    5. Ewald, Christian-Oliver & Zhang, Hai, 2016. "Hedge fund seeding via fees-for-seed swaps under idiosyncratic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 45-59.
    6. Thai Nguyen & Mitja Stadje, 2018. "Optimal investment for participating insurance contracts under VaR-Regulation," Papers 1805.09068, arXiv.org, revised Jul 2019.
    7. Guasoni, Paolo & Muhle-Karbe, Johannes & Xing, Hao, 2017. "Robust portfolios and weak incentives in long-run investments," LSE Research Online Documents on Economics 60577, London School of Economics and Political Science, LSE Library.
    8. Zongxia Liang & Yang Liu & Litian Zhang, 2021. "A Framework of State-dependent Utility Optimization with General Benchmarks," Papers 2101.06675, arXiv.org, revised Dec 2023.
    9. Alain Bensoussan & Abel Cadenillas & Hyeng Keun Koo, 2015. "Entrepreneurial Decisions on Effort and Project with a Nonconcave Objective Function," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 902-914, October.
    10. Katarzyna Romaniuk, 2013. "Pension fund taxation and risk-taking: should we switch from the EET to the TEE regime?," Annals of Finance, Springer, vol. 9(4), pages 573-588, November.
    11. Nicholas Westray & Harry Zheng, 2010. "Constrained NonSmooth Utility Maximization on the Positive Real Line," Papers 1010.4055, arXiv.org.
    12. Christian Dehm & Thai Nguyen & Mitja Stadje, 2020. "Non-concave expected utility optimization with uncertain time horizon," Papers 2005.13831, arXiv.org, revised Oct 2021.
    13. Westray, Nicholas & Zheng, Harry, 2009. "Constrained nonsmooth utility maximization without quadratic inf convolution," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1561-1579, May.
    14. Chen, An & Hieber, Peter & Sureth, Caren, 2022. "Pay for tax certainty? Advance tax rulings for risky investment under multi-dimensional tax uncertainty," arqus Discussion Papers in Quantitative Tax Research 273, arqus - Arbeitskreis Quantitative Steuerlehre.
    15. Basak, Suleyman & Makarov, Dmitry, 2012. "Difference in interim performance and risk taking with short-sale constraints," Journal of Financial Economics, Elsevier, vol. 103(2), pages 377-392.
    16. Nicole Branger & An Chen & Antje Mahayni & Thai Nguyen, 2023. "Optimal collective investment: an analysis of individual welfare," Mathematics and Financial Economics, Springer, volume 17, number 5, December.
    17. Servaes, Henri & Sigurdsson, Kari, 2022. "The Costs and Benefits of Performance Fees in Mutual Funds," Journal of Financial Intermediation, Elsevier, vol. 50(C).
    18. Marcos Escobar-Anel, 2022. "A dynamic programming approach to path-dependent constrained portfolios," Annals of Operations Research, Springer, vol. 315(1), pages 141-157, August.
    19. Wan-Kai Pang & Yuan-Hua Ni & Xun Li & Ka-Fai Cedric Yiu, 2013. "Continuous-time Mean-Variance Portfolio Selection with Stochastic Parameters," Papers 1302.6669, arXiv.org.
    20. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.

    More about this item

    Keywords

    Portfolio optimization; Fund manager’s problem; Incentive scheme; Convex duality; Delegated portfolio management; 91G10; 90C26; G11;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:18:y:2014:i:4:p:873-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.