IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v168y2018icp261-275.html
   My bibliography  Save this article

Robust estimation in linear regression models for longitudinal data with covariate measurement errors and outliers

Author

Listed:
  • Zhang, Yuexia
  • Qin, Guoyou
  • Zhu, Zhongyi
  • Zhang, Jiajia

Abstract

Measurement errors and outliers commonly arise during the process of longitudinal data collection and ignoring them in data analysis can lead to large deviations in estimates. Therefore, it is important to take into account the effect of measurement errors and outliers in longitudinal data analysis. In this paper, a robust estimating equation method for analyzing longitudinal data with covariate measurement errors and outliers is proposed. Specifically, the biases caused by measurement errors are reduced via using the independence between replicate measurements and the biases caused by outliers are corrected via centralizing the observed covariate matrix. The proposed method does not require specifying the distributions of the true covariates, response and measurement errors. In practice, it can be easily implemented via the standard generalized estimating equations algorithms. The asymptotic normality of the proposed estimator is established under regularity conditions. Extensive simulation studies show that the proposed method performs better in handling measurement errors and outliers than several existing methods. For illustration, the proposed method is applied to a data set from the Lifestyle Education for Activity and Nutrition (LEAN) study.

Suggested Citation

  • Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2018. "Robust estimation in linear regression models for longitudinal data with covariate measurement errors and outliers," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 261-275.
  • Handle: RePEc:eee:jmvana:v:168:y:2018:i:c:p:261-275
    DOI: 10.1016/j.jmva.2018.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17306838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. You-Gan Wang & Xu Lin & Min Zhu, 2005. "Robust Estimating Functions and Bias Correction for Longitudinal Data Analysis," Biometrics, The International Biometric Society, vol. 61(3), pages 684-691, September.
    2. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    3. Lin, Huiming & Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2018. "Analysis of longitudinal data with covariate measurement error and missing responses: An improved unbiased estimating equation," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 104-112.
    4. C.‐Y. Wang & Margaret Sullivan Pepe, 2000. "Expected estimating equations to accommodate covariate measurement error," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 509-524.
    5. Lang Li & Xihong Lin & Morton B. Brown & Suneel Gupta & Kyung-Hoon Lee, 2004. "A Population Pharmacokinetic Model with Time-Dependent Covariates Measured with Errors," Biometrics, The International Biometric Society, vol. 60(2), pages 451-460, June.
    6. He, Xuming & Fung, Wing K. & Zhu, Zhongyi, 2005. "Robust Estimation in Generalized Partial Linear Models for Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1176-1184, December.
    7. Guo You Qin & Zhong Yi Zhu, 2009. "Robustified Maximum Likelihood Estimation in Generalized Partial Linear Mixed Model for Longitudinal Data," Biometrics, The International Biometric Society, vol. 65(1), pages 52-59, March.
    8. Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2016. "Simultaneous mean and covariance estimation of partially linear models for longitudinal data with missing responses and covariate measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 24-39.
    9. John S. Preisser & Bahjat F. Qaqish, 1999. "Robust Regression for Clustered Data with Application to Binary Responses," Biometrics, The International Biometric Society, vol. 55(2), pages 574-579, June.
    10. Wu L., 2002. "A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 955-964, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Guowang & Wu, Mixia & Pang, Zhen, 2022. "Estimation of spatial autoregressive models with covariate measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. Mahdiyeh, Zahra & Kazemi, Iraj, 2019. "An innovative strategy on the construction of multivariate multimodal linear mixed-effects models," Journal of Multivariate Analysis, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Anna & Qin, Li & Staudenmayer, John, 2010. "M-type smoothing spline ANOVA for correlated data," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2282-2296, November.
    2. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2022. "Empirical likelihood inference for longitudinal data with covariate measurement errors: An application to the LEAN study," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    3. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Xu, Wanghong, 2019. "A novel robust approach for analysis of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 83-95.
    4. Qin, Guoyou & Zhu, Zhongyi, 2007. "Robust estimation in generalized semiparametric mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1658-1683, September.
    5. Guo You Qin & Zhong Yi Zhu, 2009. "Robustified Maximum Likelihood Estimation in Generalized Partial Linear Mixed Model for Longitudinal Data," Biometrics, The International Biometric Society, vol. 65(1), pages 52-59, March.
    6. Tang, Nian-Sheng & Duan, Xing-De, 2014. "Bayesian influence analysis of generalized partial linear mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 86-99.
    7. Qin, Guo You & Zhu, Zhong Yi & Fung, Wing K., 2008. "Robust estimating equations and bias correction of correlation parameters for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4745-4753, June.
    8. Lin, Huiming & Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2018. "Analysis of longitudinal data with covariate measurement error and missing responses: An improved unbiased estimating equation," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 104-112.
    9. Xu, Peirong & Zhu, Lixing, 2012. "Estimation for a marginal generalized single-index longitudinal model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 285-299.
    10. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    11. Guoyou Qin & Zhongyi Zhu & Wing Fung, 2012. "Robust estimation of the generalised partial linear model with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 517-530.
    12. Qin, Guoyou & Bai, Yang & Zhu, Zhongyi, 2009. "Robust empirical likelihood inference for longitudinal data," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2101-2108, October.
    13. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    14. Li, Shaomin & Wang, Kangning & Ren, Yanyan, 2018. "Robust estimation and empirical likelihood inference with exponential squared loss for panel data models," Economics Letters, Elsevier, vol. 164(C), pages 19-23.
    15. Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
    16. Kalyan Das & Angshuman Sarkar, 2014. "Robust inference for generalized partially linear mixed models that account for censored responses and missing covariates -- an application to Arctic data analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2418-2436, November.
    17. Mozhgan Taavoni & Mohammad Arashi & Samuel Manda, 2023. "Multicollinearity and Linear Predictor Link Function Problems in Regression Modelling of Longitudinal Data," Mathematics, MDPI, vol. 11(3), pages 1-9, January.
    18. Shen, Lijuan & Tang, Loon Ching, 2019. "Enhancing resilience analysis of power systems using robust estimation," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 134-142.
    19. Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    20. Tang, Nian-Sheng & Duan, Xing-De, 2012. "A semiparametric Bayesian approach to generalized partial linear mixed models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4348-4365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:168:y:2018:i:c:p:261-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.