IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v138y2019icp83-95.html
   My bibliography  Save this article

A novel robust approach for analysis of longitudinal data

Author

Listed:
  • Zhang, Yuexia
  • Qin, Guoyou
  • Zhu, Zhongyi
  • Xu, Wanghong

Abstract

A new robust estimating equation approach for analysis of longitudinal data is developed. To achieve robustness against outliers, a novel approach which corrects the bias induced by outliers through centralizing the covariate matrix in the estimating equation is proposed. The covariates are centralized by subtracting their conditional expectations and the conditional expectations can be estimated by using the local linear smoothing method. The consistency and asymptotic normality of the proposed estimator are established under some regularity conditions. Extensive simulation studies show that the proposed method is robust, has a high efficiency, and is not limited to some specific error distributions. In the end, the proposed method is applied to the longitudinal study of prevalent patients with type 2 diabetes and confirms the effectiveness of dietary fibre intake in reducing glycolated hemoglobin A1c level.

Suggested Citation

  • Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Xu, Wanghong, 2019. "A novel robust approach for analysis of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 83-95.
  • Handle: RePEc:eee:csdana:v:138:y:2019:i:c:p:83-95
    DOI: 10.1016/j.csda.2019.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319300866
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Gaorong & Zhu, Lixing & Xue, Liugen & Feng, Sanying, 2010. "Empirical likelihood inference in partially linear single-index models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 718-732, March.
    2. Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
    3. Weiping Zhang & Chenlei Leng & Cheng Yong Tang, 2015. "A joint modelling approach for longitudinal studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 219-238, January.
    4. She, Yiyuan & Owen, Art B., 2011. "Outlier Detection Using Nonconvex Penalized Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 626-639.
    5. He, Xuming & Fung, Wing K. & Zhu, Zhongyi, 2005. "Robust Estimation in Generalized Partial Linear Models for Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1176-1184, December.
    6. Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2016. "Simultaneous mean and covariance estimation of partially linear models for longitudinal data with missing responses and covariate measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 24-39.
    7. McCann, Lauren & Welsch, Roy E., 2007. "Robust variable selection using least angle regression and elemental set sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 249-257, September.
    8. John S. Preisser & Bahjat F. Qaqish, 1999. "Robust Regression for Clustered Data with Application to Binary Responses," Biometrics, The International Biometric Society, vol. 55(2), pages 574-579, June.
    9. Yanyuan Ma & Liping Zhu, 2013. "Doubly robust and efficient estimators for heteroscedastic partially linear single-index models allowing high dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 305-322, March.
    10. Cantoni E. & Ronchetti E., 2001. "Robust Inference for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1022-1030, September.
    11. Xuerong Chen & Alan T. K. Wan & Yong Zhou, 2015. "Efficient Quantile Regression Analysis With Missing Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 723-741, June.
    12. Jeng‐Min Chiou & Hans‐Georg Müller, 2005. "Estimated estimating equations: semiparametric inference for clustered and longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 531-553, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2022. "Empirical likelihood inference for longitudinal data with covariate measurement errors: An application to the LEAN study," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2018. "Robust estimation in linear regression models for longitudinal data with covariate measurement errors and outliers," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 261-275.
    2. Qin, Guoyou & Bai, Yang & Zhu, Zhongyi, 2012. "Robust empirical likelihood inference for generalized partial linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 32-44.
    3. Qin, Guo You & Zhu, Zhong Yi & Fung, Wing K., 2008. "Robust estimating equations and bias correction of correlation parameters for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4745-4753, June.
    4. Kangning Wang & Wen Shan, 2021. "Copula and composite quantile regression-based estimating equations for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 441-455, June.
    5. Lin, Huiming & Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2018. "Analysis of longitudinal data with covariate measurement error and missing responses: An improved unbiased estimating equation," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 104-112.
    6. Liu, Anna & Qin, Li & Staudenmayer, John, 2010. "M-type smoothing spline ANOVA for correlated data," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2282-2296, November.
    7. Guo You Qin & Zhong Yi Zhu, 2009. "Robustified Maximum Likelihood Estimation in Generalized Partial Linear Mixed Model for Longitudinal Data," Biometrics, The International Biometric Society, vol. 65(1), pages 52-59, March.
    8. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    9. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2022. "Empirical likelihood inference for longitudinal data with covariate measurement errors: An application to the LEAN study," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    10. Guney, Yesim & Arslan, Olcay & Yavuz, Fulya Gokalp, 2022. "Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    11. Qin, Guoyou & Zhu, Zhongyi, 2007. "Robust estimation in generalized semiparametric mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1658-1683, September.
    12. Guoyou Qin & Zhongyi Zhu & Wing Fung, 2012. "Robust estimation of the generalised partial linear model with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 517-530.
    13. Francesco Bravo, 2020. "Robust estimation and inference for general varying coefficient models with missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 966-988, December.
    14. Adimari, Gianfranco & Ventura, Laura, 2001. "Robust inference for generalized linear models with application to logistic regression," Statistics & Probability Letters, Elsevier, vol. 55(4), pages 413-419, December.
    15. Boente, Graciela & Rodriguez, Daniela, 2010. "Robust inference in generalized partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2942-2966, December.
    16. Kalyan Das & Angshuman Sarkar, 2014. "Robust inference for generalized partially linear mixed models that account for censored responses and missing covariates -- an application to Arctic data analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2418-2436, November.
    17. Thompson, Ryan, 2022. "Robust subset selection," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    18. Qin, Guoyou & Bai, Yang & Zhu, Zhongyi, 2009. "Robust empirical likelihood inference for longitudinal data," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2101-2108, October.
    19. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    20. Riani, Marco & Atkinson, Anthony C., 2010. "Robust model selection with flexible trimming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3300-3312, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:138:y:2019:i:c:p:83-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.