IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v29y2002i6p803-816.html
   My bibliography  Save this article

Semiparametric and parametric transformation models for comparing diagnostic markers with paired design

Author

Listed:
  • Kelly Zou
  • W. J. Hall

Abstract

We develop semiparametric and parametric transformation models for estimation and comparison of ROC curves derived from measurements from two diagnostic tests on the same subjects. We assume the existence of transformed measurement scales, one for each test, on which the paired measurements have bivariate normal distributions. The resulting pair of ROC curves are estimated by maximum likelihood algorithms, using joint rank data in the semiparametric model with unspecified transformations and using Box-Cox transformations in the parametric transformation case. Several hypothesis tests for comparing the two ROC curves, or characteristics of them, are developed. Two clinical examples are presented and simulation results are provided.

Suggested Citation

  • Kelly Zou & W. J. Hall, 2002. "Semiparametric and parametric transformation models for comparing diagnostic markers with paired design," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(6), pages 803-816.
  • Handle: RePEc:taf:japsta:v:29:y:2002:i:6:p:803-816
    DOI: 10.1080/02664760220136140
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760220136140
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760220136140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly Zou & W. J. Hall, 2000. "Two transformation models for estimating an ROC curve derived from continuous data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 621-631.
    2. E. S. Venkatraman, 2000. "A Permutation Test to Compare Receiver Operating Characteristic Curves," Biometrics, The International Biometric Society, vol. 56(4), pages 1134-1138, December.
    3. Margaret Sullivan Pepe, 2000. "An Interpretation for the ROC Curve and Inference Using GLM Procedures," Biometrics, The International Biometric Society, vol. 56(2), pages 352-359, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Wenbao & Park, Taesung, 2015. "Two simple algorithms on linear combination of multiple biomarkers to maximize partial area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 15-27.
    2. Kelly Zou & W. J. Hall, 2002. "On estimating a transformation correlation coefficient," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(5), pages 745-760.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y. Huang & M. S. Pepe, 2009. "A Parametric ROC Model-Based Approach for Evaluating the Predictiveness of Continuous Markers in Case–Control Studies," Biometrics, The International Biometric Society, vol. 65(4), pages 1133-1144, December.
    2. Zhang, Biao, 2006. "A semiparametric hypothesis testing procedure for the ROC curve area under a density ratio model," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1855-1876, April.
    3. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    4. Beom Seuk Hwang & Zhen Chen, 2015. "An Integrated Bayesian Nonparametric Approach for Stochastic and Variability Orders in ROC Curve Estimation: An Application to Endometriosis Diagnosis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 923-934, September.
    5. Jin, Hua & Lu, Ying, 2009. "Permutation test for non-inferiority of the linear to the optimal combination of multiple tests," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 664-669, March.
    6. Jin, Hua & Lu, Ying, 2009. "The ROC region of a regression tree," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 936-942, April.
    7. Holly Janes & Margaret S. Pepe, 2008. "Matching in Studies of Classification Accuracy: Implications for Analysis, Efficiency, and Assessment of Incremental Value," Biometrics, The International Biometric Society, vol. 64(1), pages 1-9, March.
    8. Ziyi Li & Yijian Huang & Dattatraya Patil & Martin G. Sanda, 2023. "Covariate adjustment in continuous biomarker assessment," Biometrics, The International Biometric Society, vol. 79(1), pages 39-48, March.
    9. Wang, Dan & Tian, Lili, 2017. "Parametric methods for confidence interval estimation of overlap coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 12-26.
    10. Soutik Ghosal & Zhen Chen, 2022. "Discriminatory Capacity of Prenatal Ultrasound Measures for Large-for-Gestational-Age Birth: A Bayesian Approach to ROC Analysis Using Placement Values," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 1-22, April.
    11. Lori E. Dodd & Margaret S. Pepe, 2003. "Partial AUC Estimation and Regression," Biometrics, The International Biometric Society, vol. 59(3), pages 614-623, September.
    12. Zhongkai Liu & Howard D. Bondell, 2019. "Binormal Precision–Recall Curves for Optimal Classification of Imbalanced Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 141-161, April.
    13. Holly Janes & Gary Longton & Margaret S. Pepe, 2009. "Accommodating covariates in receiver operating characteristic analysis," Stata Journal, StataCorp LP, vol. 9(1), pages 17-39, March.
    14. Arís Fanjul-Hevia & Wenceslao González-Manteiga, 2018. "A comparative study of methods for testing the equality of two or more ROC curves," Computational Statistics, Springer, vol. 33(1), pages 357-377, March.
    15. William M. Briggs & Russell Zaretzki, 2008. "The Skill Plot: A Graphical Technique for Evaluating Continuous Diagnostic Tests," Biometrics, The International Biometric Society, vol. 64(1), pages 250-256, March.
    16. Rodríguez-Álvarez, María Xosé & Roca-Pardiñas, Javier & Cadarso-Suárez, Carmen, 2011. "A new flexible direct ROC regression model: Application to the detection of cardiovascular risk factors by anthropometric measures," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3257-3270, December.
    17. Rafael Villa & Marta Serrano & Tomás García & Gema González, 2023. "To Green or Not to Green: The E-Commerce-Delivery Question," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    18. Nicholas Illenberger & Nandita Mitra & Andrew J. Spieker, 2022. "A regression framework for a probabilistic measure of cost‐effectiveness," Health Economics, John Wiley & Sons, Ltd., vol. 31(7), pages 1438-1451, July.
    19. Cheam, Amay S.M. & McNicholas, Paul D., 2016. "Modelling receiver operating characteristic curves using Gaussian mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 192-208.
    20. Helmut Elsinger & Pirmin Fessler & Stefan Kerbl & Anita Schneider & Martin Schürz & Stefan Wiesinger, 2021. "The calm before the storm? Insolvencies during the COVID-19 pandemic," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 41, pages 57-76.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:29:y:2002:i:6:p:803-816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.